Attachment F:

Contaminated Land Information

ENGEO Limited 24 Rees Street, Queenstown 9371 T: +64 3 328 9012 www.engeo.co.nz

Updated Combined Preliminary and Detailed Site Investigation

29 Hamilton Street, Gore

Submitted to: Kāinga Ora PO Box 74598 Greenlane Auckland 1546

Contents

1	Int	troductio	on	. 1
	1.1	Scop	e and Objectives of the Assessment	. 1
2	Si	te Desci	ription	. 2
3	Si	te Histor	ry	. 2
	3.1	Aeria	l Photograph Review	. 3
	3.2	Envir	onment Southland Selected Land Sites Register	. 3
	3.3	EC O	tago Soil Sampling Summary Report – 29 Hamilton Street, Gore, 2022	. 3
		3.3.1	Site Investigations	. 3
		3.3.2	Results	.4
		3.3.3	EC Otago Recommendations	. 5
		3.3.4	ENGEO Recommendations	. 6
4	Re	edevelop	oment Proposal	. 6
5	Sa	ampling	and Analysis Plan	. 6
	5.1	Poter	ntial Contaminants of Concern	.7
	5.2	Regu	latory Context	.7
	5.3	Inves	tigation Methodology	. 8
	5.4	Acce	ptance Criteria	. 8
	5.5	Analy	/tical Results	10
	5.6	Soil S	Sampling Procedures	10
	5.7	Labo	ratory Quality Assurance / Quality Control	11
6	In	vestigati	ion Findings	11
7	De	elineatio	n Sampling	12
	7.1	Delin	eation Sampling Results	12
8	Ri	sk Asse	ssment and Regulatory Compliance	13
	8.1	Cons	enting Requirements under the NES	13
	8.2 and		enting Requirements under the Environment Southland Proposed Southland Wat lan - partially operative (2021)	
	8.3	Mate	rial Handling Requirements	14

i

9	Limitations	16
10	References	.17

Tables

Table 1:	Site Information
Table 2:	Aerial Photograph Summary
Table 3:	Potential Contaminants
Table 4:	Conceptual Site Model

Appendices

ATTACHMENT A:	Statement of Limitations
ATTACHMENT B:	Aerial Photographs
ATTACHMENT C:	Site Photographs
ATTACHMENT D:	Soil Conditions Summary
ATTACHMENT E:	Laboratory Reports and Chain of Custody
ATTACHMENT F:	Remedial Action Plan

Report Title	Combined Preliminary and Detailed Site Investigation - 29 Hamilton Street,														
Project No.	21517.000.001 Doc ID 02														
Client	Kāinga Ora Client Contact Carmen Knobloch														
Distribution (PDF)	Issued to Client														
Date	Revision Details / Status	Author	Reviewer	WP											
06/03/2023	Issued to Client	GW	DR	JT											
26/04/2023	26/04/2023 Issued to Client – revised GW DR DF														
SQEP Certifying Sta	tement														

ENGEO Document Control:

I certify that the site has been assessed in accordance with current New Zealand Regulations and guidance documents and reported in general accordance with the Ministry for the Environment's Contaminated Land Management Guidelines No. 1: Reporting on Contaminated Sites in New Zealand (dated 2021).

I am considered by ENGEO Limited to be a suitably qualified and experienced practitioner (SQEP) able to certify reports pursuant to the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011, based on the company's definition of a SQEP as given below.

Dated: 26 April 2023

ENGEO Limited requires that a SQEP has the following Qualifications / Experience:

- Tertiary science or engineering qualification relevant to environmental assessment.
- A minimum of ten years of relevant experience.
- Registration with a professional body that assess and certifies environmental professionals in the competency criteria of training, experience, professional conduct and ethical behaviour.

Executive Summary

Site Address	29 Hamilton Street, Gore, Southland								
Legal Description	LOT 3 DP 391234; LOT 9 DP 1219, LOT 10 DP	1219							
Site Investigation Area	Approximately 7,683 m ²								
Proposed Redevelopment	Construction of new dwellings								
Adopted land use scenario from the NES	Residential 10% Produce								
Historical / Current Land Use	Tavern and function centre								
Analytical Results	Exceedance(s) of human health criteria	Yes							
	Exceedance(s) of environmental discharge criteria	No							
	Exceedance(s) of regional background criteria	Yes							
Applicable HAIL activity as defined by the NES (Soil)	The Environment Southland Selected Land Use Sites Register (SLUS) was reviewed for this desktop study. All three properties that make up the site, 29 Hamilton Street are not currently listed as HAIL sites.								
Regulatory Compliance	Future land disturbance and disposal is a contro the NES, if permitted activity requirements of Re								
	Due to the level of contamination at the site, a di required. The requirements for a separate discha- with Environment Southland prior to disturbance	arge consent should be confirmed							
Recommendations	Due to the exceedances of human health criteria concentrations, works shall be managed in acco Management Plan.								

1 Introduction

ENGEO Ltd was requested by Kāinga Ora to update the existing Preliminary and Detailed Site Investigation (PSI / DSI) (EC Otago 2022) of the property at 29 Hamilton Street, Gore (herein referred to as 'the site'; attached Figure 1). This work has been carried out in accordance with the signed agreement dated 7 December 2022 (ENGEO, 2022) and signed CCCS dated 17 January 2023.

This PSI / DSI has been undertaken to satisfy the requirements of the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (the "NES") (Parliamentary Counsel Office, 2011). This investigation provides information regarding the presence of land contaminants that pose a risk to future site users and site redevelopment workers. The results of this investigation have been used to evaluate whether remediation is necessary prior to site redevelopment, and to assess the resource consents required under the NES. As requested by Kāinga Ora, the investigation does not include the "halo" around the buildings on-site.

This investigation also addresses the requirements of regional regulations covering discharges to the environment from contaminated sites during and post-redevelopment works; namely, the Proposed Southland Water and Land Plan- partially operative (2021).

This investigation was undertaken in general accordance with the Ministry for the Environment (MfE) Contaminated Land Management Guidelines (CLMG) No. 1: Reporting on Contaminated Sites in New Zealand (Ministry for the Environment, Revised 2021) and CLMG No 5: Site Investigation and Analysis of Soils (Ministry for the Environment, Revised 2021). This report has been certified by a Suitably Qualified and Experienced Practitioner in accordance with the requirements of the NES. Additionally, investigation work and reporting was undertaken in general accordance with the Kāinga Ora - Homes and Communities (Kāinga Ora) generic investigation and reporting protocol and sampling and analysis plan (dated July 2022).

1.1 Scope and Objectives of the Assessment

The scope of works included a review of the previous PSI and DSI, review of historical site information, and observations during the site walkover undertaken on 25 January 2023. The objective was to gather information relating to current and historical potentially contaminating activities at the site and to prepare a Preliminary Site Investigation (PSI) report.

Soil quality sampling and analysis was conducted where the review of the previous report identified gaps in data and the PSI identified a land use from the MFE Hazardous Activities and Industry List (HAIL) had (or potentially had) occurred. The objective of the soil sampling and analysis work was to verify the findings of the PSI, and to prepare a Detailed Site Investigation (DSI) report where required by the NES to assess:

- The type, extent, and level of contamination within the proposed development area.
- Whether contaminants of concern present an unacceptable risk to human health or identified environmental receptors.

The investigation was supervised, and report reviewed and approved by a suitably qualified and experienced contaminated land practitioner in accordance with national environmental regulations for soil contamination. ENGEO's statement of limitations for the project are provided in Attachment A.

2 Site Description

Site information is summarised in Table 1. The site location is shown on Figure 1 appended to this report.

Table 1: Site Information

ltem	Description
Address	29 Hamilton Street, Gore, Southland
Legal Description	LOT 3 DP 391234; LOT 9 DP 1219, LOT 10 DP 1219
Current and Proposed Land Use	Current land use is as a vacant tavern and function centre. Proposed land use is the construction of new dwellings for residential use.
Site Investigation Area	Approximately 7,000 m ² (site area excluding the building footprint and building halo as defined in the General Kāinga Ora Contaminated Site Management Plan).
Site Setting	The site consists of a vacant tavern and function centre with associated infrastructure. The area to the north of the buildings is grassed with five large (non-NZ native) trees with the remainder of the site under asphalt for parking.
Topography	The site slopes gently from west to east.
Territorial Authority	Environment Southland.
Zoning	Residential.
Geology	The site has been regionally mapped to be underlain by fluvial deposits (Q2a) and adjacent to sandstones and siltstones of the regional Murihiku Supergroup (Turnball et al, 2003). Siltstone and mudstones are mapped as placed during the Jurassic to Cretaceous and therefore are anticipated to be much denser / harder compared with the younger fluvial deposits.
Hydrogeology	The 2022 investigation which conducted test pitting down to 2.3 m bgl did not encounter ground water. The Mataura River is at approximately elevation 70 - 71 m RL, 150 m to the west of the site. Depth to water measurements in boreholes suggest the site may be hydraulically connected to the Mataura groundwater table. Although crude, this suggests regional groundwater is likely to be shallow beneath the site (ENGEO 2023).

3 Site History

ENGEO obtained and reviewed available environmental and geological information relevant to the site, including historical aerial photographs and the Environmental Southland Selected Land Use Sites (SLUS) Register. Historical site information obtained during review of this information is summarised in this section.

3.1 Aerial Photograph Review

Aerial photographs dating from 1948 to 2022 have been reviewed; and a selection of these aerial images have been included in the appendices as Attachment B for reference.

Aerial photographs were sourced from Retrolens and Google Earth Pro. Relevant visible features on the site and surrounding area are summarised in Table 2.

Table 2. Achar Flotograph Summary	Table 2:	Aerial	Photograph	Summary
-----------------------------------	----------	--------	------------	---------

Date	Description
1948	The site is undeveloped and rural in nature. Residential development is visible to the north along Waverley Street. The site is bordered by agricultural land to the east, south and west.
1962	The site remains undeveloped and rural in nature. Further residential development to the south and west of the site. Agricultural land remains on the east boundary.
1971	Development of the structures currently on-site is underway in 1971 with the main tavern building visible in the 1971 image. Further residential development to north, south and west with the eastern boundary remaining agricultural land.
1985 - 2021	The site is as it appears today with the development of the tavern and function centre complete. The large non-native trees are visible on the north side of the property and the asphalt carpark has been formed. Residential development to the north, south and west is as it appears today. The eastern boundary remains agricultural land.

3.2 Environment Southland Selected Land Sites Register

The Environment Southland Selected Land Use Sites (SLUS) Register was reviewed as part of the desktop component of the preliminary site investigation. The site was not recorded on the SLUS.

The nearest HAIL Site is at 13 Oxford Street bordering the site to the south:

• SLUS -00000867: A10 Persistent pesticide bulk storage or use.

Environment Southland have classified this site as "Acceptable".

3.3 EC Otago Soil Sampling Summary Report – 29 Hamilton Street, Gore, 2022

EC Otago staff undertook sampling at the site on 26 April 2022:

3.3.1 Site Investigations

 16 shallow soil samples (0 – 0.1/0.15 m depth) were collected by hand auger from the lawn and garden areas.

- Fifteen samples (HA1, HA2, HA3, HB1, HB2, HB3, HC1, HC2, HC3, HE1, HE2, HE3, HA4, HB4, HC4) were composited by the laboratory into five, three-point composite samples, and analysed for organochlorine pesticides (OCPs) and / or heavy metals / metalloid, as the primary contaminants of concern for the potential HAIL activities identified.
- The remaining sample (HD), collected from the northeast corner of the property where recent aerial images show multiple cars to be parked, was analysed for heavy metals / metalloid and polycyclic aromatic hydrocarbons (PAH).
- Three soil samples (HA4, HB4 and HC4) collected from soil adjacent to the existing building and a single sample of fibre cement sheet, were analysed for the presence / absence of asbestos.
- Additional sampling was conducted across the property in conjunction with the geotechnical investigation:
 - Twelve soil samples (were collected from various depths, depending on the material encountered, across seven machine auger and machine excavated test pit locations:
 - HM1 (0.5-0.8 m bgl)
 - HM1 (1.1 m bgl)
 - HM2 (0-0.3 m bgl)
 - HM2 (0.4-0.8 m bgl)
 - HM3 (0-0.2 m bgl)
 - HM3 (1.2 m bgl)
 - HM4 (0-0.2-0.4 m bgl)
 - HM4 (0.6-1 m bgl)
 - HM5 (0.7-1.3 m bgl)
 - HM6 (0.2-0.5 m bgl)
 - HM7 (0.4-0.6 m bgl)
 - HM7 (1.4-1.6 m bgl)
 - All of the machine auger and test pit locations, except for location HM7, encountered fill material at depths ranging from 0.5 m to 1.7 m.

3.3.2 Results

 Site data was compared to the Soil Contamination Standards residential land use criteria (Ministry for the Environment, 2012. Users' Guide - National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health). To assess potential discharges to the environment, results were also compared to the Canadian Council of Ministers of the Environment (CCME) Soil Guidelines for the Protection of Environmental and Human Health.

- The concentration of contaminants in fill material across the site was generally consistent with predicted background concentrations.
- The concentration of lead in a soil sample collected from investigation location HM1, at a depth of 0.5-0.8 m bgl, exceeded the human health criterion for Residential 10% Produce. A marginal exceedance of the background concentration for cadmium and zinc were also identified in this sample. The results of a deeper sample (collected at 1.1 m bgl) indicate that elevated concentrations are likely limited to the shallower fill material.
- OCPs were detected in surface soil samples collected from around the building; however, the detectable concentrations are below guidance criteria.
- The concentration of arsenic and copper in one composite sample exceeded the adopted human health criteria (composite HA4, HB4 and HC4).
- The concentration of arsenic was below the human health criterion. One exceedance of background criteria was identified in sample HB4.
- The results for arsenic from HA4 were initially reported at 60 mg/kg, however repeat analysis as part of the in-house laboratory quality control procedures reported an average arsenic concentration of 8 mg/kg.
- Copper is also elevated above background in HA4 and HB4, chromium is elevated above background in HB4 (relative to the other surface samples) and zinc is elevated above background in HC4.
- PAH results from the asphalt sample collected in the car park indicates that the asphalt is unlikely to contain coal tar.
- BAP_{eq}^C calculations for PAH contamination is returned values of between <0.03 and 0.44 mg/kg therefore below the adopted criteria.
- No samples were found to exceed the Commercial/Industrial SCS.

3.3.3 EC Otago Recommendations

- The results of this investigation indicate that fill between 0.5 and 0.8 m bgl in the southwest of the site will require remediation for the site to be suitable for future residential land use. Further investigation is recommended to assess the extent of the area of impact and inform remediation.
- Exceedances of regional background concentrations for heavy metals and detectable concentrations of OCPs indicates the shallow soil and fill material across the site is suitable to remain, however would not be considered cleanfill for disposal purposes.
- Given the low sampling density for the size of the site and the high variability of contaminant concentrations within the fill material and some surface soils, additional sampling and analysis is highly recommended.

3.3.4 ENGEO Recommendations

- Additional soil analysis to increase the sampling density of the site. Given the variation of the fill noted during the previous investigations additional sampling will provide further information on possible contamination within the uncontrolled fill on-site. Samples will be taken in conjunction with the geotechnical investigations. Soil sample will be collected from the four proposed boreholes and hand augers (where possible) on-site.
- Additional samples to be taken within the footprint of the carpark where no samples were previously taken and in the vicinity of the identified area of lead contamination in the southwest of the site.
- Samples will be collected from 0.1, 0.3 and 0.5 m bgl and at additional depths depending on the material encountered.
- The soil samples will be analysed at an accredited laboratory for heavy metals (arsenic, copper, lead and zinc) and PAH where appropriate.

4 Redevelopment Proposal

The redevelopment plans for the site propose the demolition of the current site building to allow for the construction of 24 Units in 17 buildings consisting of:

- 7 x 1 bed dwellings.
- 10 x 2 bed dwellings.
- 4 x 3 bed dwellings.
- 2 x 4 bed dwellings.
- 1 x 5 bed dwellings.

ENGEO understands that redevelopment activities will include earthworks.

5 Sampling and Analysis Plan

The additional investigation was undertaken in tandem with the geotechnical investigations and in general accordance with the MfE CLMG No 5: Site Investigation and Analysis of Soils (Ministry for the Environment, Revised 2021) and Kāinga Ora generic investigation and reporting protocol and sampling and analysis plan (dated July 2022). Due to the identification of uncontrolled fill on-site in the EC Otago (2022) report and heavy metal contamination below 0.3 m bgl the site is not considered to meet the Conceptual Site Model set out in the Kāinga Ora Soil Sampling and Analysis Plan.

5.1 **Potential Contaminants of Concern**

Based on the information reviewed, the potential contaminants of concern are summarised in Table 3.

Potential Source of Contamination	Primary Contaminants of Concern	Possible Extent of Contamination	HAIL Activity as Defined by the NES (Soil)
Uncontrolled fill identified in previous investigations	Heavy metals	Site wide	Category I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment.
Former agricultural use of the site and OCP storage on adjacent site.	Heavy metals & OCPs	Grassed areas of site	HAIL Category A10: Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds.
Combustion debris within fill.	PAHs	Site wide	Category I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment.

Table 3: Potential Contaminants

5.2 Regulatory Context

The NES

The National Environmental Standards (NES, 2011) applies when a person wants to undertake an activity listed in Regulations 5(2) to 5(6) of the NES, on a piece of land that is described under Regulations 5(7) or 5(8) of the NES.

The following activities listed in the NES have been assessed:

- Regulation 5(4) disturbing soil.
- Regulation 5(5) subdividing land.
- Regulation 5(6) changing land use.

Based on our review of available information, the piece of land is considered to potentially meet the definition of "land covered" under Regulation 5(7) of the NES because an activity or industry described in the HAIL has potentially been undertaken on it; specifically:

- HAIL ID I.
- HAIL Category A10.

Proposed Southland Water and Land Plan – Rule 46 Land Contaminated by a Hazardous Substance

The Proposed Southland Water and Land Plan - partially operative (2021) considers the discharge of hazardous substances or wastes onto or into land or water, and issues associated with remedying or mitigating the adverse effects of those contaminated discharges.

The Proposed Southland Water and Land Plan considers the discharge of contaminants or soil from land contaminated by a hazardous substance onto or into land in circumstances which may result in those contaminants entering water that does not meet one or more of the conditions of Rule 46(a) or (b) is a discretionary activity.

5.3 Investigation Methodology

Sample locations were selected in conjunction with the geotechnical investigations and additional samples where possible in the vicinity of the EC Otago identified lead contamination. The potential sources of contamination and areas of impact identified (Section 5.1) outside of the building halos. Investigation locations are shown on attached Figure 2 (appended).

The intrusive investigation is summarised below:

- Four sample locations in the geotechnical investigation boreholes located outside the current and former building halos. Soil samples collected from 0 0.1 m bgs, 0.3 m bgs and 0.5 m bgs.
- One additional borehole advanced to 1 m bgl in the carpark. Soil samples collected from 0 0.1 m bgs, 0.3 m bgs and 0.5 m bgs.
- Two additional boreholes advanced to 1 m bgl in the vicinity of the EC Otago identified lead contamination (HM1). Soil samples collected from between 0.5 and 0.8 m bgl in line with the EC Otago contamination discovery.

5.4 Acceptance Criteria

Analytical results were assessed to determine consenting requirements and options for disposal of any soil which may be taken off-site. The following criteria were used.

Human Health Criteria

The following criteria were used to assess the risk to future site users, or to workers undertaking redevelopment activities:

• The soil contaminant standards from the NES for standard residential land use (Ministry for the Environment, Revised 2021).

For contaminants not listed in the above criteria were chosen in accordance with MfE's Contaminated Land Management Guidelines No.2 – *Hierarchy and Application in New Zealand of Environmental Guideline Values* (Ministry for the Environment, Revised 2011).

As discussed in Section 3.2.1 of MfE *Methodology for Deriving Contaminants in Soil to Protect Human Health* (Ministry for the Environment, 2011), the NES does not assess a maintenance or excavation worker exposure scenario as the risks to those workers is more appropriately managed under New Zealand health and safety legislation. Therefore, potential risks to contractors responsible for carrying out future maintenance are not further assessed.

Surrounding residential land users are considered to be adequately protected on the basis that the risks to earthworks contractors will be managed, and on the basis that the long-term risk to future site users is acceptable.

Background Criteria

The soil analysis results have also been compared to the regional predicted background concentration for heavy metals (Landcare Research Limited, Updated 2016) using the 'Fill' soil type for contaminant comparison. This comparison allows for further assessment of consenting requirements under the NES and provides information regarding disposal options for excess spoil.

Ecological Risk Screening Criteria

In absence of a specific environmental discharge or ecological protection criteria for the Southland Region, the Background soil concentrations and soil guideline values for the protection of ecological receptors, (Landcare Research Manaaki Whenua, 2016), were used to assess the potential risk to environmental and ecological receptors. These guideline values were developed to protect ecological receptors and to provide a useful means to readily assess potential environmental impact.

Cleanfill Criteria

The Waste Management Institute New Zealand (WasteMINZ) defines cleanfill in the Technical Guidelines for Disposal to land (Waste Management Institute New Zealand (WasteMINZ), 2018) as:

Virgin excavated natural materials (VENM) such as clay, soil and rock that are free of:

- combustible, putrescible, degradable or leachable components;
- hazardous substances or materials (such as municipal solid waste) likely to create leachate by means of biological breakdown;
- products or materials derived from hazardous waste treatment, stabilisation or disposal practices;
- materials such as medical and veterinary waste, asbestos, or radioactive substances that may present a risk to human health if excavated;
- contaminated soil and other contaminated materials; and
- liquid waste.

When discharged to the environment, clean fill material will not have a detectable effect relative to the background.

5.5 Analytical Results

Soil contaminant concentrations are compared with the relevant criteria in Table 1 (appended). Full analytical laboratory reports are included in Attachment E.

A summary of testing results is provided below:

- Elevated concentrations of heavy metals (Arsenic, Cadmium. Copper, Lead and Zinc) were noted when compared to the predicted background concentrations in five of the 16 samples taken as part of the EC Otago (2022) investigations.
- One location was identified in the EC Otago (2022) investigations (HM1) with an exceedance for lead of the applicable human health or adopted environmental discharge criteria were identified. Two samples (ENV2 and ENV3) were taken during the ENGEO sampling in close proximity (ENV2 – 2.5 m and ENV3 – 1 m) to HM1.
- Analysis of the samples from ENV2 returned results below adopted human health criteria and expected background levels of the analytes tested.
- Analysis of samples taken from ENV3 returned results in exceedance of Residential 10% human health criteria (SCS) for lead and expected background levels for lead and zinc.
- No exceedances of the human health or expected background levels were identified in the additional ENGEO samples BH1, BH2, BH3, BH4, ENV1, HA1, HA2 or HA3.
- OCPs below adopted residential criteria was noted in one composite sample in the EC Otago (2022) investigations.
- No OCP presence was noted in the additional sample ENV1 tested for OCP as part of the additional ENGEO investigations.
- BAP_{eq}^C calculations for PAH contamination returned values of between <0.03 and 0.44 mg/kg during the EC Otago (2022) investigations. These results are below the human health criteria.
- BAP_{eq}^C calculations for PAH contamination returned values of between <0.04 and 0.14 mg/kg during the ENGEO investigations from sample ENV01. These results are below the human health criteria.

5.6 Soil Sampling Procedures

To help ensure that soil sample results accurately reflect the soil conditions at the site, the following were undertaken:

- Samples were given a unique sample ID to identify the location and depth from where they were collected on-site.
- Samples were placed into laboratory supplied sample containers using a new pair of nitrile gloves for each sample. Prior to sampling, the equipment was decontaminated using potable water, Decon 90 solution and distilled water.
- The use of standard sample registers and chain of custody records for samples collected.
- Samples were placed directly into an insulated container prior to transport to Hill Laboratories (Hills) under ENGEO standard chain of custody.

• Fieldwork and sampling were undertaken in general accordance with the procedures for the appropriate handling of potentially contaminated soils as described in the MfE Contaminated Land Management Guidelines No.5: Site Investigation and Analysis of Soils (Ministry for the Environment, Revised 2021).

5.7 Laboratory Quality Assurance / Quality Control

Hill Laboratories (Hills) are accredited by International Accreditation New Zealand (IANZ) for the analyses performed.

The sample integrity checklist at the back of the laboratory report indicated samples were appropriately received at the laboratory.

6 Investigation Findings

Ground conditions encountered during the additional intrusive investigation carried out by ENGEO correlate with the conditions identified by EC Otago. These generally comprised of a thin layer of surficial topsoil or asphalt, underlain by uncontrolled fill averaging ~1.3 m in thickness. The fill is underlain by alluvial sand and silt deposits to a depth of at least 2.2 m below the existing ground surface.

The uncontrolled fill is of variable composition across the site, but in most locations is a mixture primarily of loose to medium dense sandy or silty GRAVEL. Occasionally, some rubbish was included with the fill such as brick and concrete fragments. Occasional coal fragments / combustion products were noted.

The results of both the EC Otago investigations showed:

"The results indicate that fill materials across the site are generally found to be consistent with predicted background concentrations. However, one location (HM1) reported concentrations of lead above the Residential SCS at depth (0.5 - 0.8 m), along with elevated concentrations of cadmium and zinc. Location HM2 also reported elevated concentrations of lead at depth (0.4 - 0.8 m), indicating that there is variability within the underlying fill materials and isolated areas of contamination are likely to be present." (EC Otago 2022)

Further sampling was undertaken by ENGEO in conjunction with the geotechnical investigations on-site. This included samples in the vicinity of EC Otago sample HM1 (ENGEO - ENV2 and ENV3) and within the carpark footprint where no previous sampling had been undertaken (ENV1).

• Analysis of the samples taken from ENV3 showed elevated concentrations of heavy metals (lead and zinc). The result for lead was in exceedance of the residential 10% human health criteria (SCS) at 0.3 m bgl but below human health criteria at 0.1 m, 0.5 m and 0.9 m bgl.

Both lead and zinc were in exceedance of predicted background concentrations at 0.3 m bgl but below predicted background concentrations at 0.1 m, 0.5 m and 0.9 m bgl.

HM1 (EC Otago) reported results (at 0.5-0.8 m bgl) of:

- Lead 400 mg/kg (> Residential 10% Produce human health criteria but < High Density Residential Human Health Criteria).
- Zinc 390 mg/kg (> background levels).
- Cadmium 0.43 mg/kg (> background levels).

ENV3 (ENGEO) reported results (at 0.3 m bgl) of:

- Lead 240 mg/kg (>Residential human health criteria, > background levels).
- Zinc 126 mg/kg (<Residential human health criteria, > background levels).
- Cadmium 0.22 mg/kg (<Residential human health criteria, > background levels).

These results indicate a likely hotspot of lead between 0.3m and 0.8m bgl above the Residential (10% produce) Human Health criteria and greater than expected background levels within the fill material in the vicinity of HM1/ENV3.

ENV3 is located approximately 1 m northeast of HM1 indicating the levels of contamination reduce but remain above human health criteria over this distance. Due to the presence of asphalt and not being able to advance a hand auger through the fill, it was not possible to take further samples around HM1 to more accurately delineate the contamination.

The elevated levels of heavy metals above expected background levels in samples analysed across the site at depths of 0.0 m and 0.8 m bgl by EC Otago and ENGEO indicates there is contamination above background levels at numerous locations across the site.

The potential source, pathway, receptor linkages at this subject site are provided in Table 4.

Source	Exposure Pathway	Potential Receptor	Acceptable Risk?
Soil containing elevated concentration of heavy	Soil ingestion, inhalation of dust, and / or dermal contact.	Future site users Surrounding residents and environment.	NO Evidence of contaminants above the
metals.	Leaching of contaminants.	Surrounding environment.	selected human health criteria or adopted environmental discharge criteria were noted.

Table 4: Conceptual Site Model

7 Delineation Sampling

ENGEO undertook further sampling (March 2023) to identify the extent of the lead contamination in the area around ENV3. Samples were taken from 0.3 m, 0.5 m and 0.8 m bgl from locations 2 m north, south, east and west of ENV3 and then at 4 m and 6 m from HM1 until either a previously negative sample location was reached or the site boundary was encountered. Beyond 6 m the samples to the north and west were taken at 10 m, 15 m and 20 m distance from HM1.

These samples were dispatched for laboratory analysis for heavy metals. The 0.3 m bgl samples were analysed with the deeper samples kept on hold to be analysed on receipt of an above residential human health criteria result from the 0.3 m bgl samples.

7.1 Delineation Sampling Results

The results from the ENGEO lead delineation sampling are presented in Table 2 (Appended) and summarised below.

Samples from 0.3 m bgl were analysed for heavy metals.

- No samples from 0.3 m bgl returned results in excess of residential human health criteria.
- DL02 (2 m south of ENV3) and DL05 (4 m south of ENV) returned result for zinc in exceedance of predicted background levels.

On the basis of these results no further analysis of the samples is required to delineate the impact noted at ENV3.

7.2 Discussion of Delineation Sampling Results

Based on the results from the samples analysed the area of lead contamination identified at HM1 can be delineated to an area bounded to an area approximately:

- 4 m north of HM1;
- 2 m east of HM1;
- 2 m south of HM1; and
- 2 m west of HM1.

The required remediation is to a depth of 0.8 m bgl.

8 Risk Assessment and Regulatory Compliance

8.1 Consenting Requirements under the NES

Elevated heavy metals when compared to the nominated human health criteria have been identified in two soil samples and elevated heavy metals compared predicted background concentrations are present at the site.

Soil Disturbance

Regulation 8(3) of the NES provides for the disturbance of contaminated soil on a piece of land as a Permitted Activity, providing that the following is met:

- Controls are in place to minimise the exposure of humans to mobilised contaminants.
- The soil must be reinstated to an erosion-resistant state within one month following earthworks.
- The volume of soil disturbance must be no more than 25 m³ per 500 m² of the "piece of land".
- Soil must not be taken away from the site that exceeds 5 m³ per 500 m² of the "piece of land" per year.
- Soil must be disposed of at a facility authorised to receive such material.
- The duration of the land disturbance works must not exceed two months.
- The integrity of any structure containing contaminated soil must not be compromised.

With regards to the above (and taking into the account the site area of 7,683 m²), the NES allows 384.1 m³ of soil to be disturbed as a Permitted Activity, and for 77 m³ of soil to be removed for disposal per year.

If earthworks will not meet the permitted activity limits specified in Regulation 8(3) of the NES, soil disturbance and soil disposal will be a restricted discretionary activity under Regulation 10 of the NES.

Subdivision and Change of Land Use

The change in land use is considered '*reasonably likely to harm human health*' and therefore the redevelopment is subject to Change in Land Use under Regulation 5(6).

One sample contained lead above the adopted soil acceptance criterion for the proposed Residential 10% human health criteria. The change in land use and subdivision are unable to meet the permitted activity standards under Regulation 8(4) of the NES, or the controlled activity standards of Regulation 9(3) of the NES.

Subject to Council approval of a Remedial Action Plan, change in land use and subdivision are restricted discretionary activities under Regulation 10 of the NES.

8.2 Consenting Requirements under the Environment Southland Proposed Southland Water and Land Plan - partially operative (2021)

Environment Southland defines a contaminated site as a site where any hazardous substances present could pose a threat to human health or the environment.

Due to the presence of lead at concentrations above the selected human health criteria, the site is classified as a contaminated site. A separate consent for land disturbance may be required.

The requirements for a separate discharge consent should be confirmed with the Environment Southland prior to disturbance of soils on-site.

8.3 Material Handling Requirements

The soil impacts identified at HM1/ENV3 are likely to be the result of anthropogenic activities including the release of contaminants from uncontrolled fill.

Impacted soils in the area of HM1/NEV3 can either be removed from site or capped in areas unlikely to be disturbed prior to the site being used for residential use.

Due to the presence of uncontrolled material within the site the geotechnical report (ENGEO 2023) indicates that fill is not considered suitable as engineered fill for construction on-site: "all uncertified fill or organic material must be removed beneath their footprints". This material cannot be considered cleanfill for use on other sites and will require disposal off-site at a suitably licenced landfill. This would likely require consent for the disturbance of the 'contaminated site' during remediation.

Prior to disposal a disposal permit and results of Toxicity Characteristics Leaching Procedure (TCLP) testing will be required to confirm the material is suitable for disposal at AB Lime.

Following discussions with the Geotech team the preferred foundation option for the site is deep (pile) foundations which do not require the removal of fill material below each footprint. As a result the area of HM1/ENV3, the elevated levels of lead contamination and an indicative area of potential contamination around HM1 can remain *in situ* for geotechnical purposes. To reduce the potential risk to site end users to an acceptable level, if the soils are to remain on-site then a suitable cap would be required. The cap should include 0.5 m of clean top soil or 0.1 m of hard standing. This would prevent the site end users coming into contact with the impacted soils. Controls should be put in place to reduce risks to the site workers and surrounding environment during site development works. An ongoing site management plan would also be required to manage future small scale soil disturbance in this area.

The delineation testing has identified an impacted area of:

- 4 m north of HM1;
- 2 m east of HM1;
- 2 m south of HM1; and
- 2 m west of HM1.

The required remediation is to a depth of 0.8 m bgl.

If removal off site was the preferred option this would require the excavation, removal and disposal of an area of soil approximately 24 m^2 to a depth of 0.8 m bgl. The volume of soil requiring removal in this scenario is approximately 19.2 m^3 .

Currently the estimated fee for the disposal of 19.2m³ of contaminated fill material is between \$5,891 and \$7,703 (excluding TCLP testing, permitting, excavation and cartage). Costing for the disposal of this material is based on information provided at the time of writing with an average disposal fee of \$236 / tonne (AB Lime, Winton February 2023), an *in situ* bulk density of 1.3 to 1.7 tonnes / m³. The Remedial Action Plan (Attachment F) has been written for this scenario.

Following the excavation and removal of the fill material around HM1, validation sampling will be required to confirm the remaining fill in the identified area of lead contamination is below the Residential SCS.

The conclusions and recommendations of this report are limited to the areas / depths of soil sampled. Therefore, there is the potential for unidentified hot spots of contamination to exist at the site. A remedial strategy and site management plan (SMP) should be prepared to outline procedures to identify and mitigate exposure to unidentified contamination, if encountered during the redevelopment works

9 Limitations

- i. We have prepared this report in accordance with the brief as provided. This report has been prepared for the use of our client, Kāinga Ora, their professional advisers and the relevant Territorial Authorities in relation to the specified project brief described in this report. No liability is accepted for the use of any part of the report for any other purpose or by any other person or entity.
- ii. The recommendations in this report are based on the ground conditions indicated from published sources, site assessments and subsurface investigations described in this report based on accepted normal methods of site investigations. Only a limited amount of information has been collected to meet the specific financial and technical requirements of the client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it should be appreciated that actual conditions could vary from the assumed model.
- iii. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.
- iv. This Limitation should be read in conjunction with the Engineering NZ/ACENZ Standard Terms of Engagement.
- v. This report is not to be reproduced either wholly or in part without our prior written permission.

We trust that this information meets your current requirements. Please do not hesitate to contact the undersigned on (03) 328 9012 if you require any further information.

Report prepared by

Gareth Ward, MSC FRGS Senior Environmental Scientist

Report reviewed by

Dave Robotham, CEnvP SC Principal Environmental Consultant

10 References

EC Otago (2022). Soil Sampling Report – 29 Hamilton Street, Gore

ENGEO (2023). Geotechnical Investigation - 29 Hamilton Street Gore, Southland

MfE (2010): Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand.

MfE (2011). Ministry for the Environment Hazardous Activities and Industries List.

MfE (2021). Contaminated Land Management Guidelines No.1: Reporting on Contaminated Sites.

MfE (2011). Contaminated Land Management Guidelines No.2: Hierarchy and Application in New Zealand of Environmental Guideline Values.

MfE (2021). Contaminated Land Management Guidelines No.5: Site Investigation and Analysis of Soils.

MfE (2011). Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

MfE (2012). Users' guide: National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health.

NES (2011). The Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations.

TABLES

Analyte	Units	840	8401	8461	81403	8902	1003	8463	89400	81403	8901	8404	8404	8964	ENV1	8871	ENV1	ENV1 -	INV2	INV2	ENK2	898/2	INV3	ENV3	EM/3	BNN3	HAD	HAD	HAED	NA03	MAS	HAD	MAGE	MOL	MAN			
Depth												0.3m																								Human Health, Residential	Haman Health, Commercial / Industrial	Realignment Criteria (Other (LRIR) - 101)
												1642-2023																										
Load												8.7																									3.300*	89.39
Zesi																																						
Arteria																																				30'		10.30
																																				3' mol		8.8 1.9
Design																																					6.300 ⁴ 10,000 ⁴	
and a second																																					382'	
																																					1.000'	
Desite.																																						
Rescuppyma	maha														0.014	0.233	0.067	0.079																		10'	*	
Dry Matter																																						
ABC .	nghg																																					
HIC																																						
and a second																																						
an Olizlare	mgbg																																					
las Obrère	- July																																					
2,000																																						
4.4 000	nghg																	+ 0.01																				
2,4 008	matha																	+ 0.01																				
L4-008																																						
2,4 001	mghg																																					
4.4-007																																						
Endersdan I Endersdan I																																						
Endersalian I Endersalian subintin																																						
To be																																						
Endle aldebude																																						
Endle Arlane	maha																	+ 0.01																				
HegtacNor																																						
Heplacitor epoch																																						
Helicitzisterioara																																						
Methiacychia																																						
Tala Pilor																																						
- consynaption and	ngbg																																					
b an a fill a first	nghg																																					
Aceughthese																																						
Andreasere																																						
Res (spectraces	inglig														+ 6.011	0.32	0.65	0.019																				
Benau(algoyene Taxa Exponence (TEP)																																						
Resultagence Palency Exploritency Factor (PE																																						
Recoldmenters - Recoldmenters																																						
Berundelpymee	mghg																																					
Bergin Schereitere	mghg																	0.063																				
Directa Nandhakara																																						
Plusandere	maha																	0.008																				
Pagence	mghg																																					
indexi(12.3 cityywie	mghg														= 6.011	0.33	0.061	0.082																				
Kaphihalwa																																						
Paylete																																						
Pharacteria:	ngbg														× 6.011	0.323	0.038	0.012																				

 Name
 status

 Bandar
 ministra constraints from first with status

 Bandar
 ministra first first with status

 Bandar
 ministra first first

Analyte	Units	5-ENG23-DL01(e) 0.15-ENG23-DL02 (s) 0.15-ENG23-DL03(w) 0.15-ENG23-DL04(m) 0.15-ENG23-DL05(s) 0.15-ENG23-DL06(w) 0.15-ENG23-DL07(m) 0.15-ENG23-DL08(w) 0.15-ENG23-DL04(m) 0.15-ENG23-DL10(w) 0.15-ENG23-DL10(w) 0.15-ENG23-DL10(w) 0.15-ENG23-DL10(w) 0.15-ENG23-DL10(w) 0.15-ENG23-DL03(w) 0.15-ENG23-DU03(w) 0.15-ENG23-DU03(w) 0.15-ENG23-DU03(w) 0.15-ENG23-DU03(w) 0.15-ENG23-DU03(w) 0.15-ENG23-DU03(w) 0.15-ENG23-DU03													
Depth														Human Health, Residential	Background Criteria (Other (LRIS) - fill)
Sampled Date															
Zinc	mg/kg	30	116	56	62	108	30	30	30	19	25	25	26	7,400 ¹	99.99
Arsenic	mg/kg	< 2	4	3	3	5	< 2	3	< 2	< 2	< 2	2	2	20 ²	99.99
Cadmium	mg/kg	< 0.1	0.12	< 0.1	< 0.1	0.13	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	3 ²	99.99
Chromium	mg/kg	9	12	11	10	14	9	11	9	8	8	9	10	460 ²	81.62
Copper	mg/kg	8	11	8	9	11	7	8	7	6	6	7	9	10,000 ²	44.45
Lead	mg/kg	8.1	70	27	37	51	9.2	10.8	10.4	4.2	7	5.2	6.9	210 ²	99.99
Nickel	mg/kg	6	7	7	7	9	6	7	6	5	6	6	6	400 ¹	99.99

Scenarios:

Shaded indicates concentrations exceed Human Health, Residential

Bold indicates concentrations exceed Background Criteria (Other (LRIS) - fill)

Criteria adopted from the following guidelines:

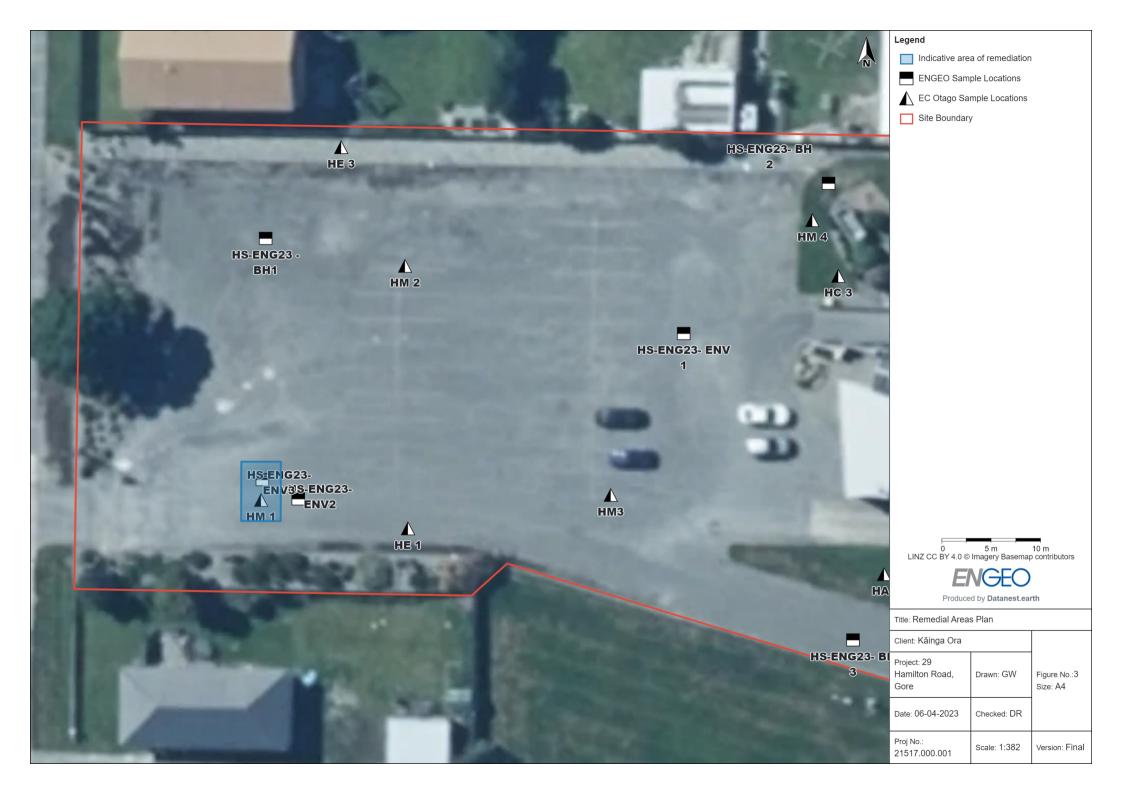
¹NEPM 2013 HILS. Criteria for Human Health, Residential land use

²Methodology for Deriving Soil Guideline Values Protective of Human Health (NES, 2011). Criteria for Human Health, Residential land use

Notes:


This table does not represent the full analytical results, please refer to the laboratory results for full details.

Assumes soil pH of 5 for Cadmium.



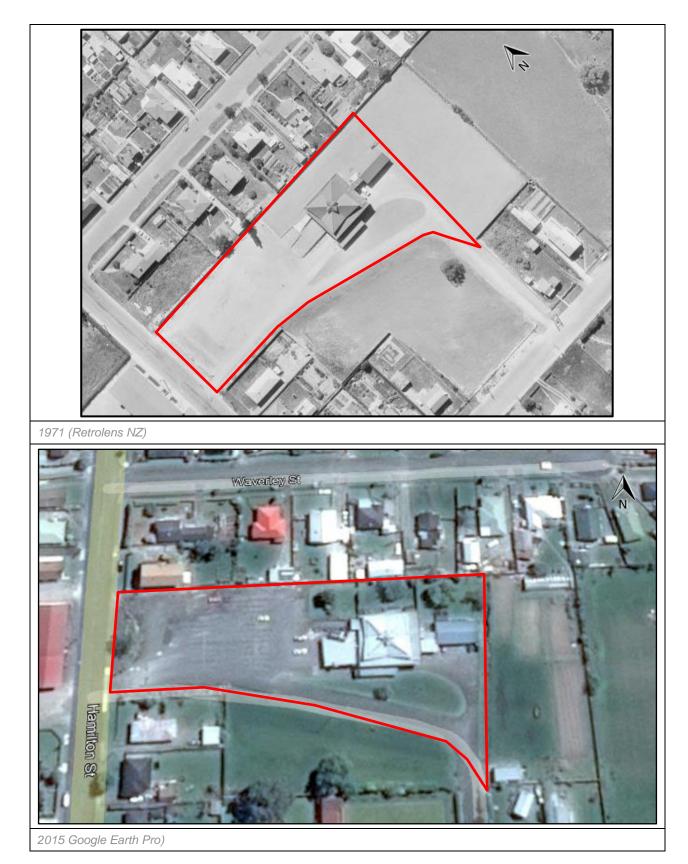
FIGURES

ATTACHMENT A:

Statement of Limitations

ENGEO

- i. We have prepared this report in accordance with the brief as provided. This report has been prepared for the use of our client, Kāinga Ora, their professional advisers and the relevant Territorial Authorities in relation to the specified project brief described in this report. No liability is accepted for the use of any part of the report for any other purpose or by any other person or entity.
- ii. The recommendations in this report are based on the ground conditions indicated from published sources, site assessments and subsurface investigations described in this report based on accepted normal methods of site investigations. Only a limited amount of information has been collected to meet the specific financial and technical requirements of the client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it should be appreciated that actual conditions could vary from the assumed model.
- iii. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.
- iv. This Limitation should be read in conjunction with the Engineering NZ/ACENZ Standard Terms of Engagement.
- v. This report is not to be reproduced either wholly or in part without our prior written permission


ATTACHMENT B:

Aerial Photographs

ATTACHMENT C:

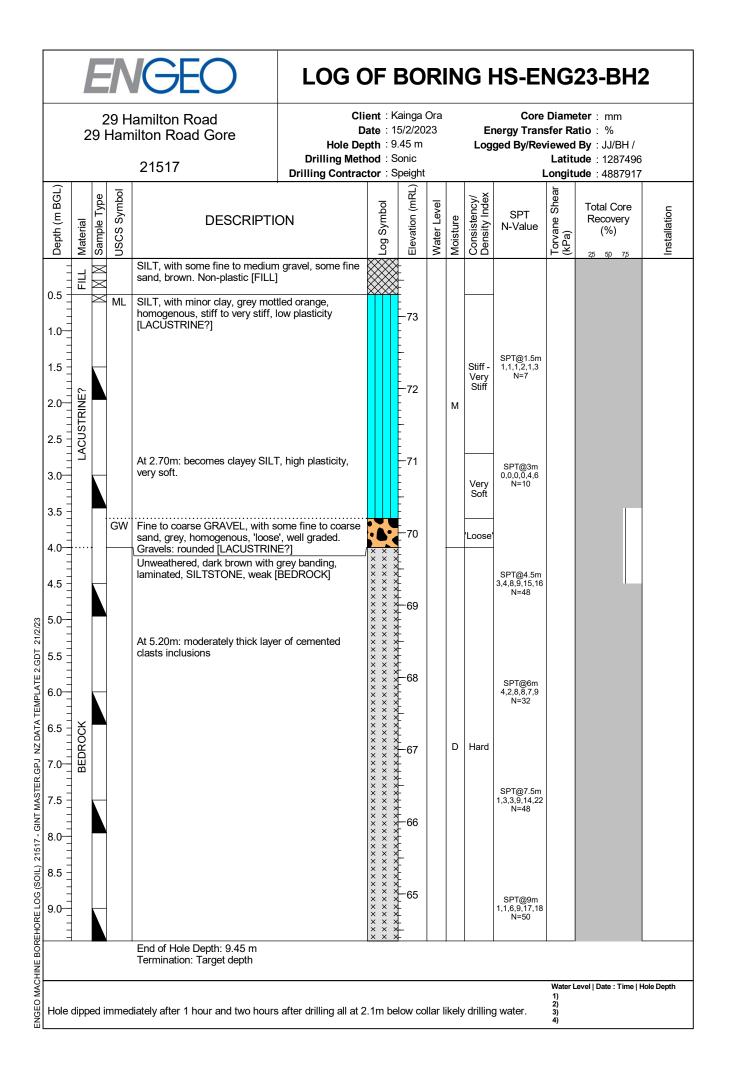
Site Photographs

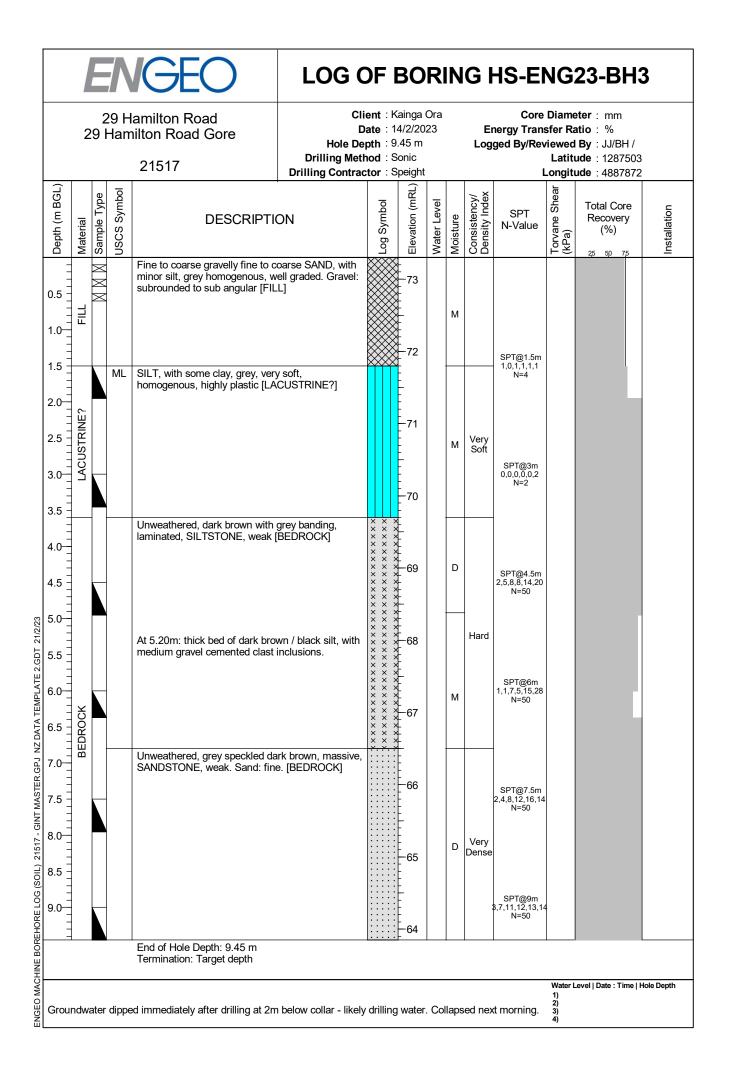
Photograph 1: 29 Hamilton Street, looking west across the carpark

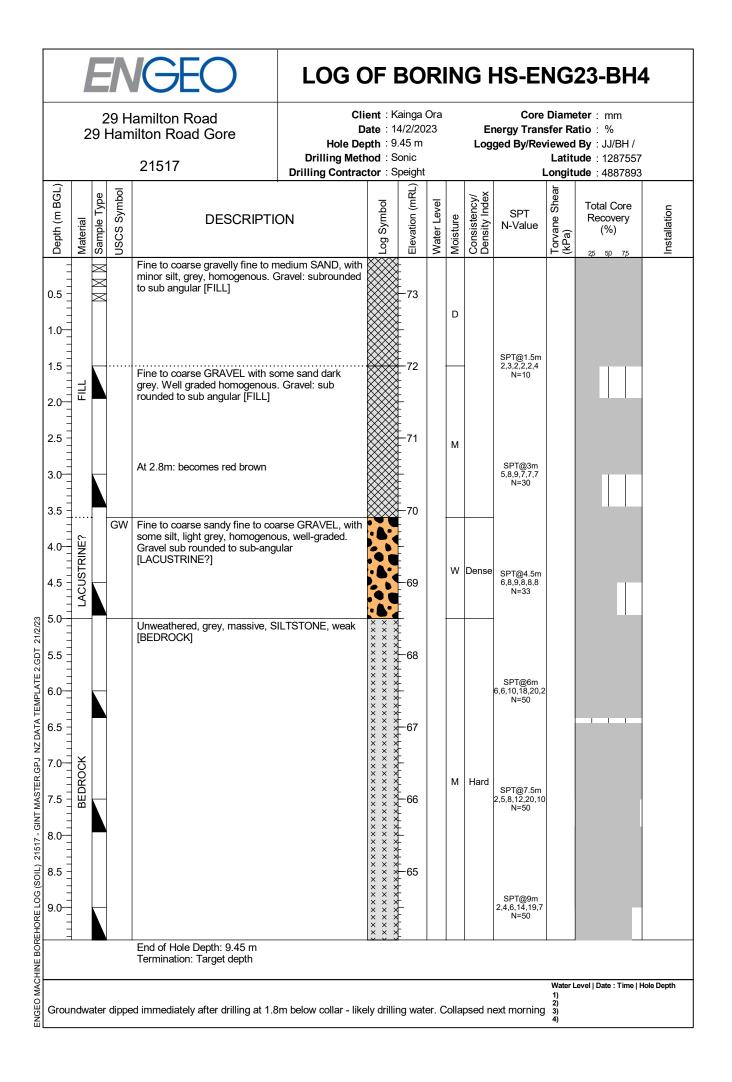
Photograph 3: 29 Hamilton Street, looking northwest

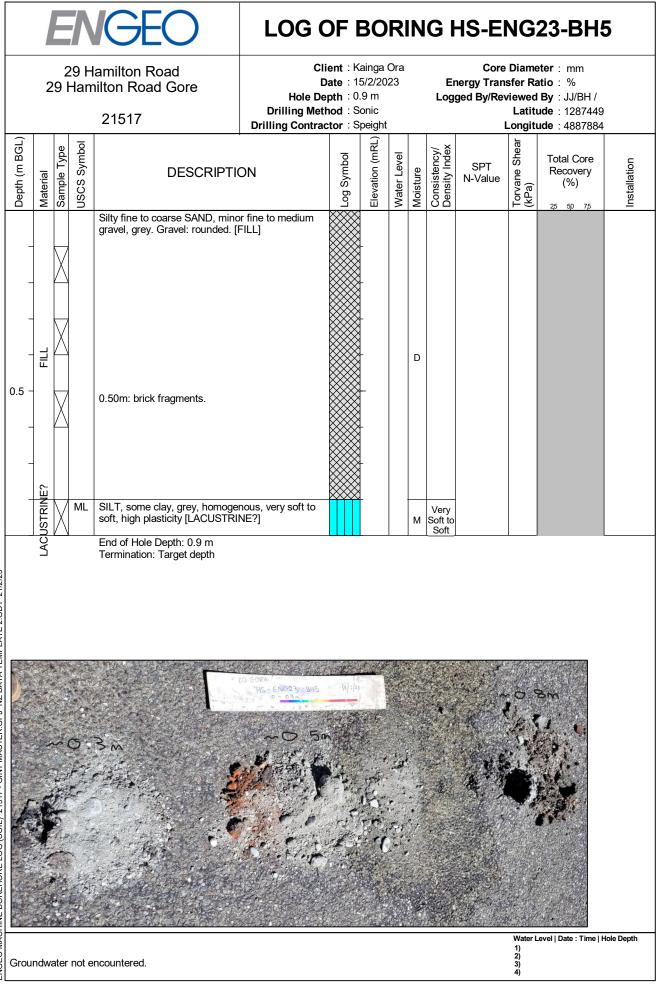
Photograph 2: 29 Hamilton Street, looking east across the carpark.

Photograph 4: 29 Hamilton Street, north area of the site.

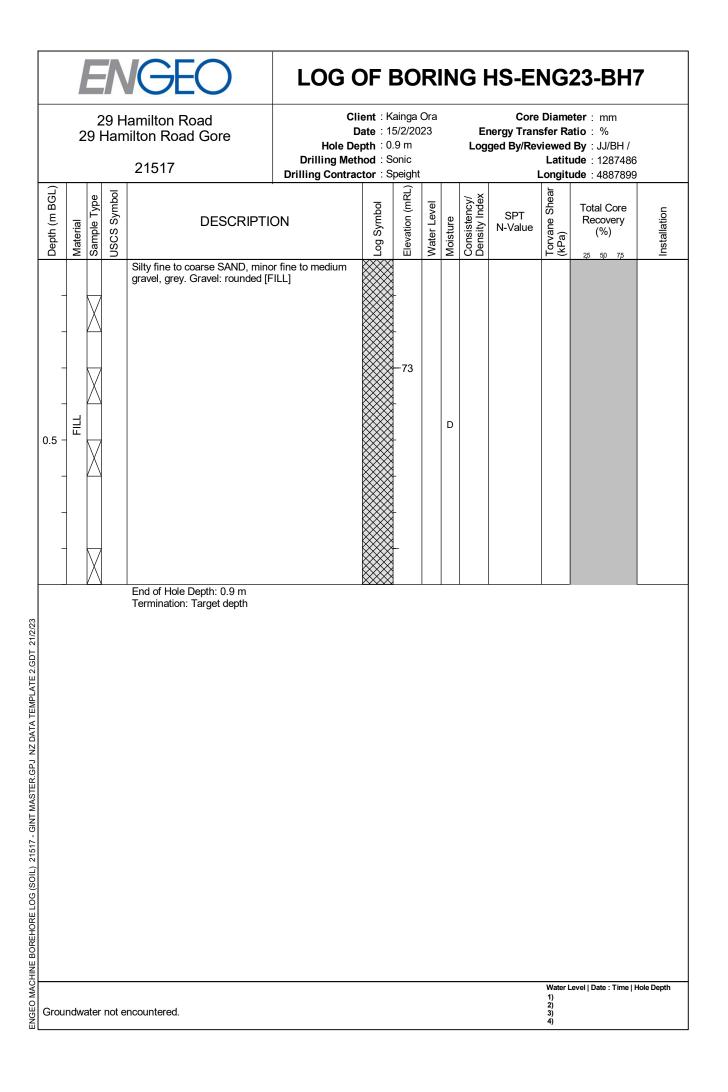



ATTACHMENT D:


Soil Conditions Summary



	2			amilton Road nilton Road Gore 21517		ate pth nod	: Sonic : Speigh)23 I	1		nergy Trans ged By/Rev	sfer Ra viewed Latitu _ongitu	eter:mm htio:% By:JJ/BH/ ude:1287443 ude:4887913	
Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	N	l od Svmhol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Installation
.5	FILL	N N N	 ML	SILT with some fine gravel, darl plastic [FILL] Fine to coarse GRAVEL, with s coarse sand, light grey, homoge Gravel: rounded [FILL] SILT with some clay, light grey homogenous, very soft to soft, I [LACUSTRINE?]	ome some fine to enous, well graded.		72				SPT@1.5m			
.5	LACUSTRINE?						- - - - - - - - - - - - - - - - - - -		м	Very Soft - Soft	1,1,1,2,2,2 N=7			
0			ML	soft, low plasticity. Organics: fib fragments [LACUSTRINE?]	prous wood	×	-70			Very Soft	SPT@3m 0,0,0,0,1,10 N=11			
.5				Unweathered, dark brown, Iam SILTSTONE, weak [BEDROCK At 3.70m: thin fine sand band]	× × × × × × × × × × × × × × × × × × ×	< × < × < × < × 69		D	Hard				
.5			At 4.30m: 900 mm of fine to medium SAND, trace	< * < *		м	Very Dense	SPT@4.5m 3,6,8,8,10,15 N=41						
0	BEDROCK					× × × × × × × × × × × × × × × × × × ×	< < < < < < < < < < < < < < < < < < <				SPT@6m 3,7,12,18,20 N=50			
.0				At 6.80m: thin band of fine sand At 7.30m: laminations faint.	3	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	× × × ×		D	Hard	SPT@7.5m 7,7,8,16,20,6 N=50			
.5				At 8.60m: Moderately thick laye medium SAND, trace silt. At 8.80m: Moderately thin layer trace fine sand. Organics: fibro At 8.90m: Moderately thick laye SAND, greeenish grey, homoge End of Hole Depth: 9.42 m Termination: Target depth	of organic SILT, us wood fragments r of silty fine	××××××××××××××××××××××××××××××××××××××	< ×		м	Very Dense Soft Very Dense	SPT@9m 0,9,16,10,13,1 N=50	1		



			E		GEO	LOG	of e	30	R	IN	Gŀ	IS-EI	NG	23-BH6	6
		2			amilton Road hilton Road Gore 21517		nod : S	5/2/20 9 m onic	23			nergy Trans ged By/Rev	sfer Ra viewed Latit	eter:mm atio:% IBy:JJ/BH/ ude:1287444 ude:4887886	
	Depth (m BGL)	Material	Sample Type	USCS Symbol	DESCRIPTIO	N	Log Symbol	Elevation (mRL)	Water Level	Moisture	Consistency/ Density Index	SPT N-Value	Torvane Shear (kPa)	Total Core Recovery (%)	Installation
	-	FILL	X		Silty fine to coarse SAND, minc gravel, grey. Gravel: rounded [F	r fine to medium ILL]		-		D					
	- 0.5	VE?		ML	0.50m: brick fragments. SILT, some clay, grey, homoge soft, high plasticity [LACUSTR	nous, very soft to		-							
		LACUSTRINE?	X		End of Hole Depth: 0.9 m			-		м	Very Soft to Soft				
A TEMPLATE 2.GDT 21/2/23					Termination: Target depth										
GINT MASTER.GPJ NZ DAT															
ENGEO MACHINE BOREHORE LOG (SOIL) 21517 - GINT MASTER.GPJ NZ DATA TEMPLATE 2.GDT															
ENGEO MACHIN	Grou	ndwa	ater	not e	ncountered.								Water I 1) 2) 3) 4)	_evel Date : Time H	lole Depth

	E		Hand Auger Log	ient: Kainga (oject: 29 Han ocation: 29 Ha oject Numbe	Ora nilto amil r: 21	on Roa ton R 1517	ad oac	l Go	re			le I.D: S-ENG	23-HA1
((E H	Contra Opera Equip Hole S	actor: itor:		Coordinates F (NZTM) Elevation (mF Elevation Dat	n: 4887 RL): 73	7917 5.8					Total Depth: 0.5 r Survey Method: C Start Date: 14/2/2 Finish Date: 14/2 Logged By: JJ/Bł Reviewed By:	Gore 0.5 urban (2023 /2023	Contours
	Elevation (mRL)	Geological Unit	DESCRIPTIO SOIL: Classification, colour, consistency / der plasticity, additional features (grain size, roundn etc. as applicable)	nsity, moisture,	Depth (m BGL)	Graphic Symbol	Water Level	Moisture Cond.	Consistency/ Density	Sample	Testing / Additional Comments		Cone Penetrometer rs per 100mm 6 8 10 12
-	3.5	EILL/TOPSOIL	SILT, minor fine sand, minor org brown, non plastic. Organics: ro [TOPSOIL] SILT, some fine to medium grav rootlets, brown, non plastic [FILI SILT, minor fine sand, light brov orange, very dense, non plastic	otlets rels, tracet _] vn mottled			1	D					
ENGEO HAND AUGER 21517 - GINT MASTER.GPJ NZ DATA TEMPLATE 2.GDT 21/2/23			End of Hole Depth: 0.5 m Termination Condition: Practical	refusal									
ENGEO HAND /	Grou	undv	vater not encountered.										

E		Hand Auger Log	Kainga t: 29 Han on: 29 Ha t Numbe	Ora nilto amil r: 21	on Roa ton R 1517	ad oad	l Go	re			le I.D: S-ENG23-HA2
Con Ope Equ Hole	tractor		Coordinates (NZTM) I Elevation (ml Elevation Dat	N: 4887 RL): 73	7916 8					Total Depth: 0.5 r Survey Method: (Start Date: 14/2/2 Finish Date: 14/2 Logged By: JJ/Bł Reviewed By:	Gore 0.5 urban Contours 2023 /2023
Elevation (mRL)	Geological Unit	DESCRIPTION SOIL: Classification, colour, consistency / density, moist plasticity, additional features (grain size, roundness, comp		Depth (m BGL)	Graphic Symbol	Water Level	Moisture Cond.	Consistency/ Density	Sample	Testing / Additional Comments	Dynamic Cone Penetrometer Blows per 100mm
<u>.</u>	TS	etc. as applicable) SILT, minor fine sand, minor organics brown, non plastic. Organics: rootlets [TOPSOIL]	, light	<u> </u>	<u>B</u> <u>17</u> - <u>3</u> - <u>1</u> <u>17</u> - <u>3</u> - <u>17</u> - <u>17</u> - <u>5</u> - <u>17</u> - <u>17</u> - <u>5</u> - <u>17</u> - <u>17</u> - <u>5</u> - <u>17</u>	W	Me	<u>ŏă</u>	Se		2 4 6 8 10 12 •
-73.5	PRD	Fine sandy SILT, brown, homogenous dense, non plastic [ALLUVIUM]	, very	- · ·			D	Very Dense			
ENGEO HAND AUGER 21517 - GINT MASTER.GPJ NZ DATA TEMPLATE 2.GDT 16/2/23 요 권		End of Hole Depth: 0.5 m Termination Condition: Practical refus	al								
		Pleistocene River Deposits water not encountered.									

	E		VGEO Hand Auger Log	Client: Project Locatio Project	Kainga t: 29 Han on: 29 Ha t Numbe	Ora nilto amil r: 21	on Roa ton R 1517	ad oac	l Go	re			le I.D: 5-EN	G2	3-⊦	IA3	3
C C E	Contra Opera Equipi Iole S	actor: tor:			Coordinates (NZTM) I Elevation (ml Elevation Dat	N: 4887 RL): 73	7874					Total Depth: 0.5 r Survey Method: C Start Date: 14/2/2 Finish Date: 14/2 Logged By: JJ/Bł Reviewed By:	Gore 0.5 urb 2023 /2023	an Con	tours		
i	(mRL)	al Unit	DESCRIP	ΓΙΟΝ		BGL)	ymbol	/el	Cond.	Icy/		Testing /	Dynam	ic Cor	ie Pei	netror	neter
:	Elevation (mRL)	Geological Unit	SOIL: Classification, colour, consistent plasticity, additional features (grain size,	cy / density, moistu roundness, compo		Depth (m BGL)	Graphic Symbol	Water Level	Moisture Cond.	Consistency/ Density	Sample	Additional Comments		ows p			
	IJ	Ū	etc. as applicable SILT, minor fine sand, mino brown, non plastic. Organics [TOPSOIL]	r organics,	light	<u> </u>		8	M	ŬĎ	× s		2	4 6	8	10	12
-		FILL/TOPSOIL	Fine sandy SILT, brown, hor plastic [FILL]	mogenous	, non			D									
-7	2.5		At 0.45m: brown mottled ora End of Hole Depth: 0.5 m	ange.		0.5					\times						•
ENGEO HAND AUGER 21517 - GINT MASTER.GPJ NZ DATA TEMPLATE 2.GDT 21/2/23				of undergr													
ENGEO HAND AL			undertaken due to proximity a	of undergr	ound servic	es.											

AUGER HOLE LOG

EXCAVATION NUMBER:

PROJECT:	KO-H	AMILTON29						3: 220222
LOCATION:	See S	Site Plan	INCLINATIO	DN: Vertical				
EASTING:	1287	438 m	EQUIPMENT:	5.5t excavator/450 mm auger	OPER	ATOR:	Robin	
NORTHING:	4887	883 m	COORD. SYSTEM:	NZTM2000	COMF	ANY:	Croydo	on Contracting
ELEVATION:	73 m		EXCAV. DATUM:	Existing ground level	HOLE ST	ARTED:	29/04/	2022
METHOD:	Aeria	l Photography	ACCURACY:	±4 m	HOLE FI	NISHED:	29/04/	2022
Soil / Rock Ty	pe		Description			aphic .og 0.0	Groundwat	Scala Penetrometer (Blows per 100mm)) 5 10 15
FILL - - FILL -		dry; well graded; grave quartz; sand, fine to c chip seal. Sandy fine to coarse (well graded; gravel, ro	el, rounded, slightl oarse; cobbles, ro GRAVEL with som ounded, slightly we oarse. Some rubb	e of cobbles; grey. Dense; y weathered greywacke or unded. Capped by 20 mm of e silt; brown. Dense; moist; athered greywacke or ish including brick and	0.3m	0.1-0.2-0.3-0.3-0.4-0.4-0.5-0.5-0.6-0.6-0.6-0.6-0.6-0.6-0.6-0.6-0.6-0.6	-	
FILL -		Medium dense; moist greywacke or quartz; brick and timber fragr	; gravel, rounded, s sand, fine to coars nents, rare coal fra	e. Some rubbish including agments.	0.6m 0.9m	0.0		
FILL				; brownish grey. Firm to stiff; brous wood fragments.	\langle	-1.0-		
ALLUVIAL SIL	Т	stiff; moist; low plasti Occasional greenish b	city; gravel, fine to		^{1.1m} × × × × × × × × × × × × × × × × × × ×	-1.2- -1.3- -1.4- -1.5- X-1.6- X-1.7- X-1.8- -1.9- X-2.0- X-2.1- X-2.2- 2.3	EPAGE	
		Total Excavation Dept						
	Targe	•	ala from 500 mr	n owing to very dense pave	ement	LOGG	ED BY:	RS
COMMENT:	subg	rade.				CHECK	ED DATE	: 13/05/2022

AUGER HOLE LOG

EXCAVATION NUMBER:

AH 2

						i		-
PROJECT:		AMILTON29				JOBN	IUMBE	R: 220222
LOCATION:		Site Plan		ON: Vertical				
EASTING:	1287	455 m	EQUIPMENT:	5.5t excavator/450 mm auger			Robin	1
NORTHING:		912 m	COORD. SYSTEM:	NZTM2000	COMP	ANY:	-	on Contracting
ELEVATION:	73 m		EXCAV. DATUM:	Existing ground level	HOLE ST	ARTED:	29/04	/2022
METHOD:	Aeria	l Photography	ACCURACY:	± 4 m	HOLE FI	VISHED:	29/04	/2022
Soil / Rock Ty	vpe		Description	n		be poth (m)	Groundwater / Seepage	Scala Penetrometer (Blows per 100mm)
FILL		dry; well graded; grave	el, rounded, slightl	e of cobbles; grey. Dense; ly weathered greywacke or unded. Capped by 20 mm of	0m	0.0	-	0 5 10 15
FILL		Sandy fine to coarse (well graded; gravel, ro quartz; sand, fine to c timber fragments, rare	ounded, slightly we oarse. Some rubb	0.8m	0.5-	-		
FILL - -		Medium dense; moist	; gravel, rounded, sand, fine to coars	se. Some rubbish including	1.2m	0.8-	-	
FILL				; brownish grey. Firm to stiff; ibrous wood fragments.		-1.2-		
ALLUVIAL SIL	T	SILT with minor clay a stiff; moist; low plasti Occasional greenish b	city; gravel, fine to		× × × × × × ×	-1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1	-	
-		Total Excavation Dept	th = 2.4 m		2.4m	-2.2 -2.3 -2.3	NO SEEPAGE	
	Tara	-		n owing to very dense pave	ement		ED BY:	RS
	subg	•	aia 110111 400 M	n owing to very dense pave	ement	<u> </u>		
COMMENT:	Jung					CHECK		
						I SHI	EET:	1 of 1

AUGER HOLE LOG

EXCAVATION NUMBER:

AH 3

SHEET:

1 of 1

PROJECT:	ко-н	AMILTON29									
LOCATION:		Site Plan	INCLINATIO	ON: Vertical		- JC	OB N	UMBE	R: 2202	222	
EASTING:	1	481 m	EQUIPMENT:	5.5t excavator/450 mm auger	OPER		२ .	Robin			
NORTHING:		886 m	COORD. SYSTEM:	NZTM2000	COM				on Cont	racting	1
ELEVATION:	73 m		EXCAV. DATUM:	Existing ground level	HOLE S			29/04		laoting	,
METHOD:		l Photography	ACCURACY:	±4m	HOLE FI			29/04			
Soil / Rock Ty	•	Sandy fine to coarse dry; well graded; grav quartz; sand, fine to c chip seal. Sandy fine to coarse	Descriptior GRAVEL with trace el, rounded, slightl coarse; cobbles, ro GRAVEL with som ounded, slightly we		G		ED: () () () () () () () () () ()	Groundwater / Seepage	Scala Pe (Blows p		
FILL - - -		SILT with some grave and bluish grey. Stiff; timber/wood fragmer	moist; low plastic	ace of organics; brownish ity; organics include	1m		- 1.0 - 1.1 - 1.2 - 1.3 - 1.4 - 1.5				
FILL			-	; brownish grey. Firm to stiff; brous wood fragments.		X	-1.6 -			\mathbf{h}	
ALLUVIAL SIL	T	SILT with minor clay a stiff; moist; low plast Occasional greenish l	icity; gravel, fine to		1.7m >	X X X X X X X X X	- 1.8 - 1.9 - 2.0 - 2.1 - 2.2 2 3	NO SEEPAGE			/
•		Total Excavation Dep	th = 2.3 m			Y	2.0				
	Targe	et depth reached. So	ala from 400 mr	n owing to very dense pav	ement	LO	GGE	D BY:	RS		
COMMENT:	subg	rade - 2nd attempt.				СНЕ	ECKE	D DATE	: 13/0	5/2022	
	1						0115		-		

TEST PIT LOG

EXCAVATION NUMBER:

TP 4

(Blows per 100mm)											
LOCATION: See Site Plan [INCLINATION: Vertical EASTING: 1287497 m EQUIPMENT: 5.st exeavator/450 mm augel OPERATOR: Robin NORTHINE: 7 m EXCAV. DATUM. Existing ground level HOLE STATED: 29/04/2022 METHOD: Aerial Photography ACCURACY: ± 4 m HOLE FINISHED: 29/04/2022 METHOD: Aerial Photography ACCURACY: ± 4 m HOLE FINISHED: 29/04/2022 Soil / Rock Type Description 0 s 10 mm 0 5 10 15 TOPSOIL/FILL Organic SLIT with trace of sand and gravet: brown. Firm: moist: 0 mm 0 s 10 mm FILL Siliy GRAVEL with some sand; greysh brown. 0 mm 0 s 10 mm 0 s 10 mm FILL Siliy GRAVEL with some sand; greysh brown. 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm FILL Oravelly SILT with minor sand and trace of organics; greysh brown. 0 mm 0	PROJECT:	КО-Н	AMILTON29						2. 220222		
NDRTHING: 4887912 m COORD. SYSTEM NZTM2000 COMPANY: Crowdon Contracting ELEVATION: 73 m EXCAV_DATUM: Existing ground level HOLE FINISHED 29/04/2022 METHOD: Aerial Photography ACCURACY: ± 4 m HOLE FINISHED 29/04/2022 Soil / Rock Type Description Image: Comparison of the coarse gravel, fine to coarse, rounded, alightly weathered greywack or quartz. Frequent rootes. Image: Comparison of the coarse, gravel, fine to coarse, rounded, alightly weathered greywack or quartz. Frequent rootests. Image: Comparison of the coarse, gravel, fine to coarse, g	LOCATION:	See S	Site Plan	INCLINATIO	DN: Vertical			NONDER			
ELEVATION: 73 m EXCAV. DATUM: Existing ground level HOLE STARTED: 29/04/2022 METHOD: Aerial Photography ACCURACY: ± 4 m HOLE STARTED: 29/04/2022 Soil / Rock Type Description Image: Construction of the start	EASTING:	1287	497 m	EQUIPMENT:	5.5t excavator/450 mm auger	0PER/	ATOR:	Robin			
METHOD: Aerial Photography ACCURACY: 1 4 m HOLE FINISHED: 29/04/2022 Soil / Rock Type Description Graphic Sill Compared Signature Compared Sign	NORTHING:	4887	912 m	COORD. SYSTEM:	NZTM2000	COMF	PANY:	Croydo	n Contracting		
Soil / Rock Type Description Image: Figure 1 Scala Penetrometer (Blows per 100mm) TOPSOIL/FILL Organic SILT with trace of sand and gravel; brown. Firm; moist, non-plastic, sand, fine to coarse; gravel, fine to coarse; orounded, slightly weathered greywacke or quartz. Image: Figure 7 Image: Figure 7 FILL Silly GRAVEL with some sand; greyish brown. He dolling dense; moist; firm to stiff, moist; low plasticity; sand, fine to coarse; gravel,	ELEVATION:	73 m		EXCAV. DATUM:	Existing ground level	HOLE ST	FARTED	: 29/04/	2022		
TOPSOIL/FILL Organic SILT with trace of sand and gravel; brown. Firm; moist; non-plastic; sand, fine to coarse; gravel, fine to coarse, rounded, slightly weathered greywacke or quartz. Frequent rootlets. 00 <td< td=""><td>METHOD:</td><td>Aeria</td><td>l Photography</td><td>ACCURACY:</td><td>± 4 m</td><td>HOLE FI</td><td>NISHED</td><td>: 29/04/</td><td>2022</td></td<>	METHOD:	Aeria	l Photography	ACCURACY:	± 4 m	HOLE FI	NISHED	: 29/04/	2022		
TOPSOIL/FILL Organic SILT with trace of sand and gravel; brown. Firm; moist; non-plastic; sand, fine to coarse; gravel, fine to coarse; orunded, slightly weathered greywacke or quartz. Frequent roolets. 0.0 0.1 FILL Silty GRAVEL with some sand; greyish brown. Medium dense; moist; well graded; sand, fine to coarse; gravel, fine to coarse; rounded, slightly weathered greywacke or quartz. 0.0 0.0 FILL Gravelly SILT with minor sand and trace of organics; greyish brown. Firm to stiff; moist; low plasticity; sand, fine to coarse; gravel, fine to coarse; orunded, slightly weathered greywacke or quartz. Organics are fibrous, tend to be found in pockets. Rare rubbish including glass and brick fragments. 0.0 ALLUVIAL SILT Clayey SILT with trace of gravel; bluish grey, becoming mottled light brown. Stiff to very stiff, moist; low plasticity; gravel, fine to coarse, rounded. Occasional greenish brown flecks/spots. 1.2 Total Excavation Depth = 2.3 m LOGGED BY: RS COMMENT: Target depth reached. CHECKED DATE 13/05/2022	Soil / Rock Ty	vpe		Descriptior	1		aphic ∟og	Groundwater / Seepage			
well graded; sand, fine to coarse; gravel, fine to coarse, rounded, slightly weathered greywacke or quartz. -0.3- FILL Gravelly SILT with minor sand and trace of organics; greyish brown. -0.6m Firm to stiff, moist; low plasticity; sand, fine to coarse; gravel, fine to coarse; founded. Occasional greenish brown flecks/spots. ALLUVIAL SILT Clayey SILT with trace of gravel; bluish grey, becoming mottled light brown. Stiff to very stiff; moist; low plasticity; gravel, fine to coarse; rounded. Occasional greenish brown flecks/spots. Total Excavation Depth = 2.3 m COMMENT: Target depth reached.	-	L	non-plastic; sand, fine slightly weathered gre	e to coarse; gravel, eywacke or quartz	fine to coarse, rounded, . Frequent rootlets.	0.2m		D 1 —			
FILL Gravelly SILT with minor sand and trace of organics; greyish forwom. Firm to stiff, moist; low plasticity; sand, fine to coarse; gravel, fine to coarse, rounded, slightly weathered greywacke or quartz. Organics are fibrous, tend to be found in pockets. Rare rubbish including glass and brick fragments. ALLUVIAL SILT Clayey SILT with trace of gravel; bluish grey, becoming mottled light brown. Stiff to very stiff; moist; low plasticity; gravel, fine to coarse, rounded. Occasional greenish brown flecks/spots. ALLUVIAL SILT Clayey SILT with trace of gravel; bluish grey, becoming mottled light brown. Stiff to very stiff; moist; low plasticity; gravel, fine to coarse, rounded. Occasional greenish brown flecks/spots. Total Excavation Depth = 2.3 m UGGED BY: COMMENT: Target depth reached.	FILL		well graded; sand, fine	e to coarse; gravel	, fine to coarse, rounded,			4 — 5 —	$\overline{\langle}$		
ALLUVIAL SILT Clayey SILT with trace of gravel; bluish grey, becoming mottled light brown. Stiff to very stiff; moist; low plasticity; gravel, fine to coarse, rounded. Occasional greenish brown flecks/spots. I.a <lii.a< li=""> I.a <l< td=""><td>FILL</td><td></td><td>Firm to stiff; moist; lo coarse, rounded, sligh are fibrous, tend to be</td><td>w plasticity; sand, tly weathered gre found in pockets</td><td>fine to coarse; gravel, fine to ywacke or quartz. Organics</td><td></td><td></td><td>7 — 8 — 9 — 0 —</td><td></td></l<></lii.a<>	FILL		Firm to stiff; moist; lo coarse, rounded, sligh are fibrous, tend to be	w plasticity; sand, tly weathered gre found in pockets	fine to coarse; gravel, fine to ywacke or quartz. Organics			7 — 8 — 9 — 0 —			
2.3 2 Total Excavation Depth = 2.3 m LOGGED BY: RS COMMENT: Target depth reached.	ALLUVIAL SIL	T	brown. Stiff to very st	iff; moist; low plas	sticity; gravel, fine to coarse,			4 — 5 — 7 — 8 — 9 —			
COMMENT: Target depth reached. LOGGED BY: RS CHECKED DATE: 13/05/2022	-					2.3m					
COMMENT: Target depth reached. CHECKED DATE: 13/05/2022			Total Excavation Dept	:h = 2.3 m					1		
SHEET: 1 of 1	COMMENT:	Targe	et depth reached.								
							SF	HEET:	1 of 1		

TEST PIT LOG

EXCAVATION NUMBER:

TP 5

SHEET:

1 of 1

PROJECT:	КО-Н	AMILTON29						R: 220222
LOCATION:	See S	Site Plan	INCLINATIO	DN: Vertical				
EASTING:	1287	521 m	EQUIPMENT:	5.5t excavator/450 mm auger	OPERA	TOR:	Robin	
NORTHING:	4887	877 m	COORD. SYSTEM:	NZTM2000	COMP	ANY:	Croydo	on Contracting
ELEVATION:	73 m		EXCAV. DATUM:	Existing ground level	HOLE ST	ARTED:	29/04/	2022
METHOD:	Aeria	l Photography	ACCURACY:	± 4 m	HOLE FI	NISHED:	29/04/	2022
Soil / Rock Ty	уре		Descriptior	1		^{bo dudda} Depth (m)	Groundwater / Seepage	Scala Penetrometer (Blows per 100mm)) 5 10 15
TOPSOIL/FILI	L	Organic SILT; brown. brick fragments.	Firm; moist; non-p	olastic; rare rubbish including	0m 0.7m	0.0 -0.1- -0.2- -0.3- -0.4- -0.5- -0.6-	~1 L/min	
FILL - -		grey. Medium dense; rounded, slightly weat segregated in some z	moist, wet to satu thered greywacke ones; sand, fine to	sand and minor clay; bluish rated in patches; gravel, or quartz, tends to be o coarse. Frequent rubbish sional combustion products.	1.4m	0.7- -0.8- -0.9- -1.0- -1.1- -1.2- -1.3-	-	
BURIED TOPS	SOIL	Organic SILT; dark bro are fine/fibrous.	own. Firm to stiff;	moist; non-plastic; organics	1.6m	×-1.5-		
ALLUVIAL SIL	T		-	grey. Stiff to very stiff; moist; inded. Occasional greenish	XIIIXIIIXIIXIIXI			
-		-			2.2m ?	2.2 -2.3 2.4		
		Total Excavation Dept						
	-	•	rched groundwa	ater confined to within pate	ches of	LOGGI	ED BY:	RS
COMMENT:	grave	elly fill.				CHECKE	D DATE:	13/05/2022
						1 0115		1

TEST PIT LOG

EXCAVATION NUMBER:

$\mathbf{\overline{\mathbf{V}}}$									
PROJECT:	КО-Н	IAMILTON29						220222	
LOCATION:	See S	Site Plan	INCLINATIO	ON: Vertical			UNDER	. 220222	
EASTING:	1287	'552 m	EQUIPMENT:	5.5t excavator/450 mm aug	er OPER/	ATOR:	Robin		
NORTHING:	4887	'868 m	COORD. SYSTEM:	NZTM2000	COMF	PANY:	Croydor	n Contracting	
ELEVATION:	73 m		EXCAV. DATUM:	Existing ground level	HOLE ST	FARTED:	29/04/2	2022	
METHOD:	Aeria	l Photography	ACCURACY:	± 4 m	HOLE FI	NISHED:	29/04/2	2022	
Soil / Rock Ty	/pe		Descriptior	ı	Gr	^{aphic} Depth (m)		cala Penetrometer (Blows per 100mm) 5 10 15	
TOPSOIL/FILI	L	Organic SILT; dark br rootlets.	own. Firm; moist; ı	non-plastic; frequent	0m 0.2m	0.0			
FILL			ravel, rounded, slig	e silt; brown. Medium dense htly weathered greywacke o sh including ceramic	e;	0.2 - 0.3 - 0.4 - 0.4 - 0.5 - 0			
ALLUVIAL SIL		brown. Stiff to very s rounded. Occasional	tiff; moist; low plas greenish brown fle	grey, becoming mottled ligh sticity; gravel, fine to coarse ecks/spots.					
		Total Excavation Dep	oth = 2.3 m			1066	ED BY:	RS	
COMMENT:	Targe	et depth reached.					ED DATE:	13/05/2022	
						SHEET: 1 of 1			

TEST PIT LOG

EXCAVATION NUMBER:

SHEET:

1 of 1

PROJECT:	IV0-U	AMILTON29				<u> </u>			
LOCATION:		Site Plan	INCLINATIO	DN: Vertical		- J	OB N	UMBE	R: 220222
EASTING:		539 m	EQUIPMENT:	5.5t excavator/450 mm auger	OPER		<u>р.</u> Т	Robin	
NORTHING:		918 m	COORD. SYSTEM:	NZTM2000	COM				on Contracting
ELEVATION:	74 m		EXCAV. DATUM:		HOLE S			29/04/	
METHOD:		l Photography	ACCURACY:	Existing ground level ± 4 m	HOLE S			29/04/	
METHOD.	Aena	i Photography	ACCONACT.	± 4 III			IED.	29/04/	2022
Soil / Rock Ty	/pe		Descriptior	1	G	Graphic Log	Depth (m)	Groundwat	Scala Penetromet (Blows per 100mm)
TOPSOIL		Organic SILT; dark bi including ceramic fra		non-plastic; rare rubbish roots and rootlets.	0m	۲×۲	0.0		
ALLUVIAL SIL	.T	Sandy SILT; brown. F	Firm; moist; non-pla	astic; sand is fine.	<u>0.3m</u>	XXXXX	- 0.2 - - 0.3 - - 0.4 -		
ALLUVIAL SA	ND	Gravelly fine to coard	Se SAND with trace	of cobbles; grey and brown.	0.95m	*××××××			
		Medium dense; mois	st; poorly graded; gr	ravel, fine to medium, rarely ywacke or quartz; cobbles,					
					2 10 10 10 10 10 10 10 10 10 10 10 10 10	°о 4°	— 1.5 — — 1.6 — — 1.7 — — 1.8 —		
ALLUVIAL SA	ND	grey and brown. Mec	lium dense; moist; se, rounded, slightly	r silt and trace of cobbles; poorly graded; gravel, fine to vweathered greywacke or	2.3m	0 0 0	-1.9 - -2.0 - -2.1 - -2.2 - -2.3 -	SEEP,	
-		-			2.4m	??	2.4	0N N	
		Total Excavation Dep	oth = 2.3 m						
						L	OGGE	D BY:	RS
COMMENT:	Targe	et depth reached.				СН	ECKE	D DATE	: 13/05/2022
	1						0115		1. (.)

ATTACHMENT E:

Laboratory Reports and Chain of Custody

Hill Laboratories TRIED, TESTED AND TRUSTED

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)

- Т +64 7 858 2000
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 4

Certificate of Analysis

Client: Engeo Limite Contact: Gareth Ward C/- Engeo Li PO Box 373 Christchurch	d imited		Dat Dat Que Orc Clie	o No: te Received: te Reported: te No: ter No: ter Reference: tomitted By:	3175136 16-Feb-2023 22-Feb-2023 82742 21517 Jacob Johnso	SPv1
Sample Type: Soil						
	Sample Name:	BH01 @ 0.1m 14-Feb-2023	BH01 @ 0.3m 14-Feb-2023	BH01 @ 0.5m 14-Feb-2023	BH02 @ 0.1m 14-Feb-2023	BH03 @ 0.1m 14-Feb-2023
	Lab Number:	3175136.1	3175136.2	3175136.3	3175136.4	3175136.5
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	5	6	4	5	2
Total Recoverable Cadmium	mg/kg dry wt	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	10	12	11	24	8
Total Recoverable Copper	mg/kg dry wt	10	12	9	10	6
Total Recoverable Lead	mg/kg dry wt	76	72	25	76	4.8
Total Recoverable Nickel	mg/kg dry wt	7	8	8	8	5
Total Recoverable Zinc	mg/kg dry wt	60	69	39	39	23
	Sample Name:	BH03 @ 0.5m 14-Feb-2023	BH04 @ 0.1m 14-Feb-2023	BH04 @ 0.3m 14-Feb-2023	BH04 @ 0.5m 14-Feb-2023	ENV1 - @ 0.1m 14-Feb-2023
	Lab Number:	3175136.6	3175136.7	3175136.8	3175136.9	3175136.10
Individual Tests						
Dry Matter	g/100g as rcvd	-	-	-	-	96
Heavy Metals, Screen Level	0 0					
Total Recoverable Arsenic	mg/kg dry wt	5	2	3	3	2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	12	11	12	12	12
Total Recoverable Copper	mg/kg dry wt	11	8	9	8	9
Total Recoverable Lead	mg/kg dry wt	11.1	6.8	8.7	5.9	9.7
Total Recoverable Nickel	mg/kg dry wt	8	7	7	7	8
Total Recoverable Zinc	mg/kg dry wt	39	26	34	25	31
Organochlorine Pesticides Sc			-	-	-	-
Aldrin	mg/kg dry wt	-	_	-		< 0.010
alpha-BHC	mg/kg dry wt	-	_	_	-	< 0.010
beta-BHC	mg/kg dry wt	-	-	-	-	< 0.010
delta-BHC	mg/kg dry wt	-	_	-	_	< 0.010
gamma-BHC (Lindane)	mg/kg dry wt	-	_	_		< 0.010
cis-Chlordane	mg/kg dry wt	-	_	_		< 0.010
trans-Chlordane	mg/kg dry wt	-	_	_	-	< 0.010
2,4'-DDD	mg/kg dry wt	-	_	-	-	< 0.010
4,4'-DDD	mg/kg dry wt	-	-	-	-	< 0.010
2,4'-DDE	mg/kg dry wt	-	-	-	-	< 0.010
4,4'-DDE	mg/kg dry wt	-	-	-	-	< 0.010
2,4'-DDT	mg/kg dry wt	-	-	-	-	< 0.010
4,4'-DDT	mg/kg dry wt	-	-	-	-	< 0.010
Total DDT Isomers	mg/kg dry wt	-	-	-	-	< 0.06
Dieldrin	mg/kg dry wt	-	-	-	-	< 0.010
Endosulfan I	mg/kg dry wt	-	-	-	-	< 0.010

CCREDITED

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

					1
ample Name:	BH03 @ 0.5m 14-Feb-2023	BH04 @ 0.1m 14-Feb-2023	BH04 @ 0.3m 14-Feb-2023	BH04 @ 0.5m 14-Feb-2023	ENV1 - @ 0.1n 14-Feb-2023
Lab Number:	3175136.6	3175136.7	3175136.8	3175136.9	3175136.10
ening in Soil					
mg/kg dry wt	-	-	-	-	< 0.010
mg/kg dry wt	-	-	-	-	< 0.010
	-	-	-	-	< 0.010
	-	-	-	-	< 0.010
	-	-	-	-	< 0.010
	-	-	-	-	< 0.010
	-	_	-	-	< 0.010
	-	_	-	-	< 0.010
	-				< 0.010
	oil*				
					0.6
	-				0.6
	-	-		-	< 0.010
		-		-	< 0.010
	-	-	-	-	< 0.010
		-	-	-	< 0.010
	-	-	-	-	< 0.010
	-	-	-	-	0.019
mg/kg dry wt	-	-	-	-	0.079
	-	-	-	-	0.110
	-	-	-	-	0.110
mg/kg dry wt	-	-	-	-	0.068
mg/kg dry wt	-	-	-	-	0.050
mg/kg dry wt	-	-	-	-	0.053
mg/kg dry wt	-	-	-	-	0.025
mg/kg dry wt	-	-	-	-	0.021
mg/kg dry wt	-	-	-	-	0.014
mg/kg dry wt	-	-	-	-	0.048
mg/kg dry wt	-	-	-	-	< 0.010
mg/kg dry wt	-	-	-	-	0.052
mg/kg dry wt	-	-	-	-	< 0.05
mg/kg dry wt	-	-	-	-	0.018
mg/kg dry wt	-	-	-	-	0.012
mg/kg dry wt	-	-	-	-	0.132
ample Name:	ENV1 @ 0.3m	ENV1 @ 0.5m	ENV1 @ 0.9m	ENV2 @ 0.1m	ENV2 @ 0.3m
-	14-Feb-2023	14-Feb-2023	14-Feb-2023	14-Feb-2023	14-Feb-2023
Lab Number:	3175136.11	3175136.12	3175136.13	3175136.14	3175136.15
g/100g as rcvd	97	86	89	-	-
mg/kg dry wt	2	4	3	2	3
mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.10
mg/kg dry wt	13	15	13	11	12
mg/kg dry wt	9	10	10	8	9
mg/kg dry wt	7.9	11.8	8.5	8.0	76
	7	8	8	7	6
	30	41	33	30	84
-		0.3	0.7		-
mg/kg dry wt	< 0.3	< 0.012	< 0.011	-	
	< 0.011	< 0.01Z	< 0.011	-	-
	- 0.014	< 0.010	- 0.011		
mg/kg dry wt mg/kg dry wt	< 0.011 < 0.011	< 0.012 < 0.012	< 0.011 < 0.011	-	-
	Lab Number: ening in Soil mg/kg dry wt mg/kg dry wt </td <td>Interfact14-Feb-2023Lab Number:3175136.6ening in Soil</td> <td>14-Feb-2023 14-Feb-2023 Lab Number: 3175136.6 3175136.7 ening in Soil </td> <td>Interface 14-Feb-2023 14-Feb-2023 14-Feb-2023 Lab Number: 3175136.6 3175136.7 3175136.8 ening in SOI - - mg/kg dry wt - - -</td> <td>14-Feb-2023 14-Feb-2023 14-Feb-2023 14-Feb-2023 Lab Number: 3175136.6 3175136.7 3175136.8 3175136.9 mg/kg dry wt - - - - mg/kg dry wt - - - - mg/kg dry wt - - - - - - mg/kg dry wt -<</td>	Interfact14-Feb-2023Lab Number:3175136.6ening in Soil	14-Feb-2023 14-Feb-2023 Lab Number: 3175136.6 3175136.7 ening in Soil	Interface 14-Feb-2023 14-Feb-2023 14-Feb-2023 Lab Number: 3175136.6 3175136.7 3175136.8 ening in SOI - - mg/kg dry wt - - -	14-Feb-2023 14-Feb-2023 14-Feb-2023 14-Feb-2023 Lab Number: 3175136.6 3175136.7 3175136.8 3175136.9 mg/kg dry wt - - - - mg/kg dry wt - - - - mg/kg dry wt - - - - - - mg/kg dry wt -<

Sample Type: Soil						
S	ample Name:	ENV1 @ 0.3m 14-Feb-2023	ENV1 @ 0.5m 14-Feb-2023	ENV1 @ 0.9m 14-Feb-2023	ENV2 @ 0.1m 14-Feb-2023	ENV2 @ 0.3m 14-Feb-2023
	Lab Number:	3175136.11	3175136.12	3175136.13	3175136.14	3175136.15
Polycyclic Aromatic Hydrocarbo						
Anthracene	mg/kg dry wt	< 0.011	< 0.012	< 0.011	_	_
Benzo[a]anthracene	mg/kg dry wt	< 0.011	0.020	0.030	_	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.014	0.033	0.067	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.025	0.055	0.086	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.025	0.055	0.085	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	0.012	0.045	0.073	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.011	0.019	0.050	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.011	0.026	0.059	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.011	0.016	0.025	-	-
Chrysene	mg/kg dry wt	< 0.011	0.018	0.036	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.011	< 0.012	< 0.011	-	-
Fluoranthene	mg/kg dry wt	0.010	0.036	0.067	-	-
Fluorene	mg/kg dry wt	< 0.011	< 0.012	< 0.011	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.011	0.030	0.051	-	-
Naphthalene	mg/kg dry wt	< 0.06	< 0.06	< 0.06	-	-
Perylene	mg/kg dry wt	< 0.011	0.014	0.018	-	-
Phenanthrene	mg/kg dry wt	< 0.011	0.023	0.035	-	-
Pyrene	mg/kg dry wt	0.028	0.034	0.137	-	-
S	ample Name:	ENV2 @ 0.5m 14-Feb-2023	ENV2 @ 0.9m 14-Feb-2023	ENV3 @ 0.1m 14-Feb-2023	ENV3 @ 0.3m 14-Feb-2023	ENV3 @ 0.5m 14-Feb-2023
	Lab Number:	3175136.16	3175136.17	3175136.18	3175136.19	3175136.20
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	2	4	2	4	2
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	0.22	< 0.10
Total Recoverable Chromium	mg/kg dry wt	11	15	11	12	10
Total Recoverable Copper	mg/kg dry wt	8	11	8	10	7
Total Recoverable Lead	mg/kg dry wt	12.6	37	8.3	240	16.0
Total Recoverable Nickel	mg/kg dry wt	7	9	7	6	7
Total Recoverable Zinc	mg/kg dry wt	34	76	29	126	36
S	ample Name:	ENV3 @ 0.9m 14-Feb-2023	HA04 @ 0.5m	BH02 @ 0.3m 14-Feb-2023	BH02 @ 0.5m	BH04 @ 1.0m
	Lab Number:	3175136.21	14-Feb-2023 3175136.22	3175136.23	14-Feb-2023 3175136.24	3175136.25
Heavy Metals, Screen Level		0170100.21	0110100.22	0110100.20	0110100.24	0110100.20
Total Recoverable Arsenic	mg/kg dry wt	5	4	4	4	3
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Cadmium	mg/kg dry wt	15	14	12	12	10
Total Recoverable Copper	mg/kg dry wt	13	14	12	12	8
Total Recoverable Lead	mg/kg dry wt	36	10.8	15.8	16.4	5.9
Total Recoverable Nickel	mg/kg dry wt	10	8	9	7	6
Total Recoverable Zinc	mg/kg dry wt	71	48	40	44	24
				-		
	ample Name:	BH03 @ 0.3m 14-Feb-2023	HA02 @ 0.1m 14-Feb-2023	HA02 @ 0.3m 14-Feb-2023 3175136.28	HA02 @ 0.5m 14-Feb-2023	HA03 @ 0.1m 14-Feb-2023
Heavy Metals, Screen Level	Lab Number:	3175136.26	3175136.27	3173130.20	3175136.29	3175136.30
	malla during	0	5	Α	3	E
Total Recoverable Arsenic	mg/kg dry wt	8	-	4	-	5
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.11
Total Recoverable Chromium	mg/kg dry wt	10	13	11	13	12
Total Recoverable Copper	mg/kg dry wt	8	11	10	9	12
Total Recoverable Lead	mg/kg dry wt	14.8	31	18.3	14.7	20
Total Recoverable Nickel	mg/kg dry wt	6	9	7	7	8
Total Recoverable Zinc	mg/kg dry wt	37	54	46	47	64

	Sample Name:	HA03 @ 0.3m	HA03 @ 0.5m	HA04 @ 0.1m	HA04 @ 0.3m
		14-Feb-2023	14-Feb-2023	14-Feb-2023	14-Feb-2023
	Lab Number:	3175136.31	3175136.32	3175136.33	3175136.34
Heavy Metals, Screen Level					
Total Recoverable Arsenic	mg/kg dry wt	5	4	4	4
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.13	< 0.10
Total Recoverable Chromium	mg/kg dry wt	13	13	13	13
Total Recoverable Copper	mg/kg dry wt	12	12	9	9
Total Recoverable Lead	mg/kg dry wt	18.0	12.3	16.8	15.6
Total Recoverable Nickel	mg/kg dry wt	9	9	8	8
Total Recoverable Zinc	mg/kg dry wt	61	45	55	49

Analyst's Comments

Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-34			
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	10-13			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-34			
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	10			
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.010 - 0.05 mg/kg dry wt	10-13			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	10-13			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.024 mg/kg dry wt	10-13			
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.024 mg/kg dry wt	10-13			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 16-Feb-2023 and 21-Feb-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

Ś	Hill Labor	ratorie	S		ANAL Laboratories Lim	YSIS REQUEST
Quot		NU IRUSIL	í	28 Duk Private	e Street, Hamilto Bag 3205	n 3204 317 51 26
Prim	ary Contact Gareth Ward	<u>.</u>		Hamilto	on 3240, New Zea	• •
	nitted By Jake Johson				08 HILL LAB (44 4 7 858 2000	555 22) Received by: Nathaniel Sue
	nt Name ENGEO Ltd			E ma	il@hill-labs.co.nz w.hill-laboratories	
Addre	ss 1st Floor 24 Rees Street, Qu	eenstown				
		Postcode 9300			HIMI	DE COSTONA RECORD
Phone	e Mobile	0226572009		Sent Hill I	to aboratories	Date & Time: 15-02-2023
Email	gward@engeo.co.nz					Name:
Chai	rge To ENGEO Ltd			to to	ck if you require CO be emailed back	Signature:
Client	Reference 21517			10.00	ived at aboratories	Date & Time:
Order						Name:
Resi	ults To Reports will be emailed to Primary Additional Reports will be sent as s	Contact by default. pecified below.				Signature:
🖸 En	mail Primary Contact 🛛 🗌 Email Submi	tter 🗌 Email Cl	ient	Conc		
🗌 Er	mail Other				Room Temp	Chilled Frozen 20.9
0	ther					
	of testing are not routinely included in the Certific e inform the Laboratory if you would like this infor					
	INFORMATION / KI	NOWN HAZART	IS I	B.1.		
	TARRENT CONTRACTOR AND A CARD AND A	the state of the second states		Pric	ority 📋 L	.ow 🔽 Normal 🔲 High
		<u>n han an hair an h</u>			-	.ow 이 Normai 이 비명이 SAP, extra charge applies, please contact lab first)
		1. <u>L. S. A. A. A. B. Edda</u> n,		[Urgent (A	SAP, extra charge applies, please contact lab first)
		1. <u>6. 6. 6. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.</u>		[SAP, extra charge applies, please contact lab first)
No.	Sample Name	Sample Date	Sam	Requ	Urgent (A	SAP, extra charge applies, please contact lab first) <i>Date:</i> Tests Required (if not as per Quote)
No. 1	Sample Name BHOI @ 0.1 m	•		Requ	Urgent (A	SAP, extra charge applies, please contact lab first) Date:
	BHOI@O.IM	Date		Requ	Urgent (Assessment of the second seco	SAP, extra charge applies, please contact lab first) <i>Date:</i> Tests Required (if not as per Quote)
1	1211- 0	Date 14-102(23 14-102123		Requ	Urgent (As rested Reporting i Sample Type SOII	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals
1	BH01@0.1m BH01@0.3m	Date 14-102(23 14-102123		Requ	Urgent (A ested Reporting I Sample Type SOII SOII	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals Heavy Metals
1 2 3	BHOI @O.IM BHOI @O.3M BHOI @O.SM BHO2 @O.IM	Date 14-102123 14-102123 14-102123 14-102123		Requ	Urgent (A ested Reporting I Sample Type Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals Heavy Metals Heavy Metals
1 2 3 4	BHOI @O.IM BHOI @O.3m BHOI @O.Sm BHOZ @O.IM BHOZ @O.2m	Date 14-102123 14-102123 14-102123 14-102123		Requ	Urgent (A ested Reporting I Sample Type Soil Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals Heavy Metals Heavy Metals Heavy Metals
1 2 3 4 5	BHOI @O.IM BHOI @O.3m BHOI @O.Sm BHOZ @O.Im BHOZ @O.2m	Date 14-102123 14-102123 14-102123 14-102123		Requ	Urgent (A ested Reporting I Sample Type Soil Soil Soil Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals
1 2 3 4 5 6	BHO1@0.1m BHO1@0.3m BHO1@0.5m BHO2@0.1m BHO2@0.2m BHO2@0.3m	Date 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123		Requ	Urgent (As ested Reporting I Sample Type Soil Soil Soil Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals
1 2 3 4 5 6 7	BHOI @ O.Im BHOI @ O.3m BHOI @ O.5m BHO2 @ O.1m BHO2 @ O.2m BHO2 @ O.3m BHO3 @ O.1m	Date 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123	Tin	Requ	Urgent (At ested Reporting I Sample Type Soil Soil Soil Soil Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals
1 2 3 4 5 6 7 8	BHOI @ O.Im BHOI @ O.3m BHOI @ O.5m BHO2 @ O.1m BHO2 @ O.2m BHO2 @ O.3m BHO3 @ O.3m BHO3 @ O.3m	Date 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123	Tin	Requ	Urgent (At ested Reporting I Sample Type Soil Soil Soil Soil Soil Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals
1 2 3 4 5 6 7 8 9	BHOI @ O.Im BHOI @ O.3m BHOI @ O.Sm BHO2 @ O.1m BHO2 @ O.2m BHO2 @ O.3m BHO3 @ O.3m BHO3 @ O.3m BHO3 @ O.5m	Date 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123 14-102123	Tin	Requ	Urgent (Ar ested Reporting I Sample Type Soil Soil Soil Soil Soil Soil Soil Soil	SAP, extra charge applies, please contact lab first) Date: Tests Required (if not as per Quote) Heavy Metals

KB Item: 23775

Version: 5

Continued on next page

Page 1 of 2

No.	Sample Name	Sample Date	Sample Time	Sample Type	Tests Required (if not as per Quote)
13	ENV 1 - @0.1m	14/02/23		Soil	Heavy Metals , OCP, PAH
14	ENVI @0.3m	14-102/23		Soil	Heavy Metals , TAH
15	ENVI @0.5m	14-102123		Soil	Heavy Metals , TAH
16	ENVI QO.9m			Soil	Heavy Metals , TAH
17	ENV2 QO.IM		-	Soil	Heavy Metals
18	ENV2 @0.3m			Soil	Heavy Metals
19	ENV2@0.5m			Soil	Heavy Metals
20	ENV2 00.9m			Soil	Heavy Metals
21	ENV3@0.1m			Soil	Heavy Metals
22	ENV3 @0.3m			Soil	Heavy Metals
23	ENV3@0.Sm			Soil	Heavy Metals
24	ENV3@ 0.9m			Soil	Heavy Metals
25	HAOZ QO.IM	14-102123		Soil	Heavy Metals
26	HAOR CO.3m			Soil	Heavy Metals
27	HAO2 QO.Sm			Soil	Heavy Metals
28	HA03 @0.1m			Soil	Heavy Metals
29	HA03 @0.3m			Soil	Heavy Metals
30	HHO3 QO.SM			Soil	Heavy Metals
31	HAOK @O.Im	14/02/23		Soil	Heavy Metals
32	HA04 @0.3m			Soil	Heavy Metals
33	HA04 @0.5m			Soil	Heavy Metals
34			-	Soil	Heavy Metals
35				Soil	Heavy Metals
36				Soil	Heavy Metals
37				Soil	Heavy Metals
38				Soil	Heavy Metals
39				Soil	Heavy Metals
40				Soil	Heavy Metals

KB Item: 23775

Version: 5

Page 2 of 2

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) Т

+64 7 858 2000

Е mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 2

Certificate of Analysis

Client:	Engeo Limited	Lab No:	3222174	SPv1
Contact:	Gareth Ward	Date Received:	30-Mar-2023	
	C/- Engeo Limited	Date Reported:	04-Apr-2023	
	PO Box 373	Quote No:	82742	
	Christchurch 8140	Order No:		
		Client Reference:	21517 - Delineation	
		Submitted By:	Gareth Ward	

Sample Type: Soil

Sample Name:					HS-ENG23-DL05(s) 0.3	
Leh Number	,	. ,	,	,	3222174.13	
Lab Number:	3222174.1	3222174.4	3222174.7	3222174.10	3222174.13	
	_		-	-	_	
		-	-	-	5	
					0.13	
007					14	
mg/kg dry wt	8		8	9	11	
mg/kg dry wt	8.1	70	27	37	51	
mg/kg dry wt	6	7	7	7	9	
mg/kg dry wt	30	116	56	62	108	
Sample Name:						
		,	,		w) 0.3	
Lab Number:	3222174.16	3222174.19	3222174.22	3222174.25	3222174.28	
	1	i .	r.	1	1	
		-		< 2	< 2	
mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
n mg/kg dry wt	9	11	9	8	8	
mg/kg dry wt	7	8	7	6	6	
mg/kg dry wt	9.2	10.8	10.4	4.2	7.0	
mg/kg dry wt	6	7	6	5	6	
mg/kg dry wt	30	30	30	19	25	
Sample Name:	HS-EN	G23-DL11(n) 0.3		HS-ENG23-DL1	3(n) 0.3	
Lab Number:	3	3222174.31		3222174.34		
mg/kg dry wt		2		2		
mg/kg dry wt		< 0.10		< 0.10		
n mg/kg dry wt		9		10		
mg/kg dry wt		7		9		
mg/kg dry wt		5.2		6.9		
mg/kg dry wt		6		6		
mg/kg dry wt		25		26		
	Lab Number: mg/kg dry wt mg/kg dry wt	e) 0.3 Lab Number: 3222174.1 mg/kg dry wt <2	e) 0.3 (s) 0.3 Lab Number: 3222174.1 3222174.4 mg/kg dry wt < 2	i i	Lab Number: 3222174.1 3222174.4 3222174.7 3222174.10 mg/kg dry wt < 2	

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34				
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34				

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 03-Apr-2023 and 04-Apr-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Human

Kim Harrison MSc Client Services Manager - Environmental

Sample^A Arsenic Cadmium Chromium Copper Lead Nickel Zinc **DDT**^B $\mathbf{BAP_{eq}}^{C}$ Composite samples: HA1, HA2 & HA3 (0-7 0 13 13 13 26 8 74 0 36 _ 0.15m) HB1, HB2 & HB3 (0-6 0.14 12 15 43 9 94 < 0.08 _ 0.15m) HC1, HC2 & HC3 (0-8 0.17 11 14 27 8 80 < 0.08 _ 0.15m) HE1, HE2 & HE3 (0-9 5 0.19 14 16 32 66 _ 0.15m) HA4 (0-0.15m), HB4 22 0.17 45 56 31 7 125 & HC4 (0-0.1m) 10 19 Average 0.16 23 32 8 88 73% 15% 77% 82% 21% 10% 26% RSD _ -UCL 29 0.18 47 59 38 9 110 _ -Individual samples: HA4 (0-0.15m) 8 0.14 10 8 96 81 23 -HB4 (0-0.1m) 17 0.19 34 47 26 7 113 --HC4 (0-0.1m) 12 0.15 40 38 8 _ 14 197 HD (0-0.15m) 6 0.1 16 17 38 9 81 _ < 0.04 0.08 HM1 (0.5-0.8 m) 4 11 19 7 390 0 43 400 HM1 (1.1m) 5 < 0.10 14 11 10 26 73 -_ HM2 (0-0.3m) 2 < 0.10 9 8 6 23 _ < 0.03 6.2 HM2 (0.4-0.8m) 7 < 0.10 10 12 90 6 73 0.25 HM3 (0-0.2m) < 2 < 0.10 9 7 6.3 6 27 _ < 0.03 HM3 (1.2m) 5 < 0.10 10 10 17.3 6 41 _ < 0.04 5 11 HM4 (0.2-0.4m) < 0.10 9 12.5 8 42 0.03 _ HM4 (0.6-1.0m) 3 < 0.10 15 12 10.9 9 42 0.44 HM5 (0.7-1.3m) 3 < 0.10 11 9 11.4 7 38 < 0.03 -HM6 (0.2-0.5m) 4 < 0.10 11 14 11.3 9 37 _ < 0.03 HM7 (0.4-0.6m) 3 < 0.10 11 8 7.5 7 31 -< 0.03 HM7 (1.4-1.6m) 7 2 < 0.10 11 4.8 6 23 < 0.03 6 < 0.13 13 20 46 7 83 _ < 0.09 Average RSD 73% 63% 47% 102% 212% 18% 113% _ 144% UCL 0.17 15 41 151 8 130 0.25 8 Soil Acceptance Criteria (Human Health - Residential) NES^D SCS >10,000 210 70 10 20 3 460 -NEPM^E SGV 400 7,400 Soil Quality Guidelines (Environmental Health - Residential/Parkland) CCMF 300 45 250 0.7 20 17 10 64 63 Landfill Screening Acceptance Criteria ^G 100 100 100 200 200 500 300 Class A 100 20 50 30 Class B 10 2 10 10 10 20 20 400 200 300 Burnside 100 20 400 400 800 500

Predicted Background ⁺ Median 2.88 0.066 16.56 10 12.2 7.98 44.06 0.024 0.052 95th Quantile 12.06 0.34 80.15 42.85 44.34 44.96 182.8 0.245 0.64 Results for total concentration analysis, average, 95% upper confidence limit (UCL) and SCSs/SGVs in mg/kg dry weight; relative standard deviation (RSD) in %. Sample numbers are

as marked in Figure 4. Cells highlighted yellow exceed the predicted background concentration. Cells highlighted red exceed human health standards SCS/SGV.

^B The total DDT isomers is reported.

^C The benzo(a)pyrene equivalent (BAP_{eq}) is calculated as the sum of each of the detected concentrations of nine carcinogenic PAHs (benzo(a) anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene and indeno(1,2,3-cd) pyrene), multiplied by their respective potency equivalency factors from Table 40 in the *Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health* (Ministry for the Environment, 2011. Wellington).

^D Ministry for the Environment, 2012. Users' Guide, National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Wellington. Cr SCS is reported as Cr(VI). Residential scenario applied.

^E National Environment Protection Council (Australia), 2013. National Environment Protection (Assessment of Site Contamination) Measure 1999. The values applied represent a Health Investigation Level (HIL) for Low Density Residential land use (HIL A).

^F Canadian Council of Ministers of the Environment, 2021. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Soil quality guideline for environmental health for Residential/parkland land use quoted. Orange cells indicate the site average exceeds the guideline.

^G Ministry for the Environment, 2004. Module 2: Hazardous Waste Guidelines - Landfill Waste Acceptance Criteria and Landfill Classification. And RM17.198.01.V2. Blue cells indicate Landfill Acceptance Criteria that are likely exceeded by the average.

^H Landcare Research, 2015. Background soil concentrations of selected trace elements and organic contaminants in New Zealand. Predicted median and 95th Quantile reported for gravel. Also refer: https://lris.scinfo.org.nz/layer/48470-pbc-predicted-background-soil-concentrations-new-zealand/. DDT and BAP_{eq} for provincial New Zealand shown.

FCntago

T 0508 HILL LAB (44 555 22) Т

- +64 7 858 2000
- E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 4

Certificate of Analysis

Client:	Environmental Consultants Otago Limited
Contact:	Ciaran Keogh
	C/- Environmental Consultants Otago Limited PO Box 5522 Dunedin 9058

Lab No:	2968027	SPv5
Date Received:	27-Apr-2022	
Date Reported:	17-May-2022	(Amended)
Quote No:	86979	
Order No:		
Client Reference:	Hamilton	
Submitted By:	Bernice Chapman	

Sample Type: Soil

Sample Type: Soil						
	Sample Name:	HA4 0-0.15m 26-Apr-2022 1:57 pm	HB4 0-0.1m 26-Apr-2022 2:20 pm	HC4 0-0.1m 26-Apr-2022 2:40 pm	HD 0-0.15m 26-Apr-2022 2:15 pm	Composite of HA1 0-0.15m, HA2 0-0.15m & HA3 0-0.15m
	Lab Number:	2968027.4	2968027.8	2968027.12	2968027.13	2968027.17
Individual Tests		I	I	1	1	
Dry Matter	g/100g as rcvd	-	-	-	77	76
Total Recoverable Arsenic	mg/kg dry wt	8	17	12	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.14	0.19	0.15	-	-
Total Recoverable Chromium	mg/kg dry wt	10	34	14	-	-
Total Recoverable Copper	mg/kg dry wt	81	47	40	-	-
Total Recoverable Lead	mg/kg dry wt	23	26	38	-	-
Total Recoverable Nickel	mg/kg dry wt	8	7	8	-	-
Total Recoverable Zinc	mg/kg dry wt	96	113	197	-	-
Heavy Metals, Screen Level		1	1	,		
Total Recoverable Arsenic	mg/kg dry wt	-	-	-	6	7
Total Recoverable Cadmium	mg/kg dry wt	-	-	-	0.10	0.13
Total Recoverable Chromium	mg/kg dry wt	-	-	-	16	13
Total Recoverable Copper	mg/kg dry wt	-	-	-	17	13
Total Recoverable Lead	mg/kg dry wt	-	-	-	38	26
Total Recoverable Nickel	mg/kg dry wt	-	-	-	9	8
Total Recoverable Zinc	mg/kg dry wt	-	-	-	81	74
Organochlorine Pesticides S	creening in Soil			1		
Aldrin	mg/kg dry wt	-	-	-	-	< 0.013
alpha-BHC	mg/kg dry wt	-	-	-	-	< 0.013
beta-BHC	mg/kg dry wt	-	-	-	-	< 0.013
delta-BHC	mg/kg dry wt	-	-	-	-	< 0.013
gamma-BHC (Lindane)	mg/kg dry wt	-	-	-	-	< 0.013
cis-Chlordane	mg/kg dry wt	-	-	-	-	< 0.013
trans-Chlordane	mg/kg dry wt	-	-	-	-	< 0.013
2,4'-DDD	mg/kg dry wt	-	-	-	-	< 0.013
4,4'-DDD	mg/kg dry wt	-	-	-	-	< 0.013
2,4'-DDE	mg/kg dry wt	-	-	-	-	< 0.013
4,4'-DDE	mg/kg dry wt	-	-	-	-	0.22
2,4'-DDT	mg/kg dry wt	-	-	-	-	0.018
4,4'-DDT	mg/kg dry wt	-	-	-	-	0.109
Total DDT Isomers	mg/kg dry wt	-	-	-	-	0.36
Dieldrin	mg/kg dry wt	-	-	-	-	< 0.013
Endosulfan I	mg/kg dry wt	-	-	-	-	< 0.013
Endosulfan II	mg/kg dry wt	-	-	-	-	< 0.013
Endosulfan sulphate	mg/kg dry wt	-	-	-	-	< 0.013
Endrin	mg/kg dry wt	-	-	-	-	< 0.013

CCREDITED

TING LABORATO

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
S	ample Name:	HA4 0-0.15m 26-Apr-2022 1:57 pm	HB4 0-0.1m 26-Apr-2022 2:20 pm	HC4 0-0.1m 26-Apr-2022 2:40 pm	HD 0-0.15m 26-Apr-2022 2:15 pm	Composite of HA1 0-0.15m, HA2 0-0.15m &
						HA3 0-0.15m
<u> </u>	Lab Number:	2968027.4	2968027.8	2968027.12	2968027.13	2968027.17
Organochlorine Pesticides Scre	-	1		1		
Endrin aldehyde	mg/kg dry wt	-	-	-	-	< 0.013
Endrin ketone	mg/kg dry wt	-	-	-	-	< 0.013
Heptachlor	mg/kg dry wt	-	-	-	-	< 0.013
Heptachlor epoxide	mg/kg dry wt	-	-	-	-	< 0.013
Hexachlorobenzene	mg/kg dry wt	-	-	-	-	< 0.013
Methoxychlor	mg/kg dry wt	-	-	-	-	< 0.013
Polycyclic Aromatic Hydrocarbo		1	1	1		
Total of Reported PAHs in Soil	mg/kg dry wt	-	-	-	< 0.3	-
1-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.013	-
2-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.013	-
Acenaphthylene	mg/kg dry wt	-	-	-	< 0.013	-
Acenaphthene	mg/kg dry wt	-	-	-	< 0.013	-
Anthracene	mg/kg dry wt	-	-	-	< 0.013	-
Benzo[a]anthracene	mg/kg dry wt	-	-	-	< 0.013	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	< 0.013	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES		-	-	-	< 0.04	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	-	< 0.04	-
Benzo[b]fluoranthene + Benzo[j fluoranthene		-	-	-	< 0.013	-
Benzo[e]pyrene	mg/kg dry wt	-	-	-	< 0.013	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	< 0.013	-
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	< 0.013	-
Chrysene	mg/kg dry wt	-	-	-	< 0.013	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	< 0.013	-
Fluoranthene	mg/kg dry wt	-	-	-	< 0.013	-
Fluorene	mg/kg dry wt	-	-	-	< 0.013	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	< 0.013	-
Naphthalene	mg/kg dry wt	-	-	-	< 0.07	-
Perylene	mg/kg dry wt	-	-	-	< 0.013	-
Phenanthrene	mg/kg dry wt	-	-	-	< 0.013	-
Pyrene	mg/kg dry wt	-	-	-	< 0.013	-
S	ample Name: Lab Number:	Composite of HB1 0-0.15m, HB2 0-0.15m & HB3 0-0.15m 2968027.18	Composite of HC1 0-0.15m, HC2 0-0.15m & HC3 0-0.15m 2968027.19	Composite of HE1 0-0.15m, HE2 0-0.15m & HE3 0-0.15m 2968027.20	Composite of HA4 0-0.15m, HB4 0-0.1m & HC4 0-0.1m 2968027.21	
Individual Tests						
Dry Matter	g/100g as rcvd	74	74	-	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	6	8	5	22	-
Total Recoverable Cadmium	mg/kg dry wt	0.14	0.17	0.19	0.17	-
Total Recoverable Chromium	mg/kg dry wt	12	11	14	45	-
Total Recoverable Copper	mg/kg dry wt	15	14	16	56	-
Total Recoverable Lead	mg/kg dry wt	43	27	32	31	-
Total Recoverable Nickel	mg/kg dry wt	9	8	9	7	-
Total Recoverable Zinc	mg/kg dry wt	94	80	66	125	-
Organochlorine Pesticides Scre	eening in Soil					
Aldrin	mg/kg dry wt	< 0.014	< 0.013	-	-	-
alpha-BHC	mg/kg dry wt	< 0.014	< 0.013	-	-	-
beta-BHC	mg/kg dry wt	< 0.014	< 0.013	-	-	-
delta-BHC	mg/kg dry wt	< 0.014	< 0.013	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.013	-	-	-

	Sample Name:	Composite of	Composite of	Composite of HE1	Composite of	
		HB1 0-0.15m,	HC1 0-0.15m,	0-0.15m, HE2	HA4 0-0.15m,	
		HB2 0-0.15m &	HC2 0-0.15m &	0-0.15m & HE3	HB4 0-0.1m &	
		HB3 0-0.15m	HC3 0-0.15m	0-0.15m	HC4 0-0.1m	
	Lab Number:	2968027.18	2968027.19	2968027.20	2968027.21	
Organochlorine Pesticide	s Screening in Soil					
cis-Chlordane	mg/kg dry wt	< 0.014	< 0.013	-	-	-
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.013	-	-	-
2,4'-DDD	mg/kg dry wt	< 0.014	< 0.013	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.014	< 0.013	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.013	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.014	0.031	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.014	< 0.013	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.014	0.014	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Dieldrin	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Endosulfan I	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Endosulfan II	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Endrin	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Endrin ketone	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Heptachlor	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.013	-	-	-
Methoxychlor	mg/kg dry wt	< 0.014	< 0.013	-	-	-

Analyst's Comments

Amended Report: This certificate of analysis replaces report '2968027-SPv4' issued on 11-May-2022 at 12:17 pm. Reason for amendment: Additional heavy metals have been added to 2968027.4, .8 & 12.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Samp	le Ty	pe:	Soil

Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	4, 8, 12-13, 17-21
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	4, 8, 12
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	13
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	13, 17-21
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	17-19
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.05 mg/kg dry wt	13
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	13, 17-19
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	4, 8, 12
Composite Environmental Solid Samples*	Individual sample fractions mixed together to form a composite fraction.	-	4, 8, 12
Total Recoverable Arsenic	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	4, 8, 12

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Total Recoverable Cadmium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.10 mg/kg dry wt	4, 8, 12
Total Recoverable Chromium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	4, 8, 12
Total Recoverable Copper	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	4, 8, 12
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	4, 8, 12
Total Recoverable Nickel	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	2 mg/kg dry wt	4, 8, 12
Total Recoverable Zinc	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	4 mg/kg dry wt	4, 8, 12
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	13
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	13

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 29-Apr-2022 and 17-May-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

T 0508 HILL LAB (44 555 22)

Page 1 of 3

Certificate of Analysis

Client:	Environmental Consultants Otago Limited
	Ciaran Keogh
	C/- Environmental Consultants Otago Limited PO Box 5522 Dunedin 9058

Lab No:	2969427	A2Pv1
Date Received:	28-Apr-2022	
Date Reported:	02-May-2022	
Quote No:	86979	
Order No:		
Client Reference:	Hamilton	
Submitted By:	Bernice Chapman	

Sample Type: Soil						
Sample	Name:	HA4 ASB 26-Apr-2022 1:55 pm	HB4 ASB 26-Apr-2022 2:20 pm	HC4 ASB 26-Apr-2022 2:40 pm		
Lab N	umber:	2969427.1	2969427.2	2969427.3		
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	-	-
Description of Asbestos Form		-	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	-	-
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	-	-
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	-	-
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	-	-
As Received Weight	g	623.7	572.4	619.7	-	-
Dry Weight	g	425.7	490.1	511.7	-	-
Moisture	%	32	14	17	-	-
Sample Fraction >10mm	g dry wt	2.9	77.9	56.3	-	-
Sample Fraction <10mm to >2mm	g dry wt	97.7	112.2	136.4	-	-
Sample Fraction <2mm	g dry wt	324.0	299.4	317.4	-	-
<2mm Subsample Weight	g dry wt	58.7	56.8	56.7	-	-
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	-	-
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	-	-
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Glossary of Terms

• Loose fibres (Minor) - One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• Loose fibres (Major) - Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.

ACM Debris (Minor) - One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
ACM Debris (Major) - Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis

by stereo microscope/PLM.

Unknown Mineral Fibres - Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
 Trace - Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction

2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil	Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No					
Individual Tests								
Weight of Asbestos as Asbestos Fines in <10mm >2mm Fraction*	Measurement on analytical balance, from the <10mm >2mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.00001 g dry wt	1-3					
New Zealand Guidelines Semi Quantitati	New Zealand Guidelines Semi Quantitative Asbestos in Soil							
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-3					
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-3					
Moisture	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	1-3					
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1-3					
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1-3					
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1-3					
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1-3					
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1-3					
Weight of Asbestos in ACM (Non- Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1-3					
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-3					
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1-3					
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-3					
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1-3					

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-3
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-3

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed on 02-May-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

John Keneth Paglingayen BApSc Laboratory Technician - Asbestos

Parnell

Т 0508 HILL LAB (44 555 22) Т

Page 1 of 2

+64 7 858 2000

Ε mail@hill-labs.co.nz

W www.hill-laboratories.com

Certificate of Analysis

Client: Environmental Consultants Otago Limited Contact: Ciaran Keogh C/- Environmental Consultants Otago Limited PO Box 5522 Dunedin 9058

Lab No:	2969455	A2Pv1
Date Received:	28-Apr-2022	
Date Reported:	03-May-2022	
Quote No:	86979	
Order No:		
Client Reference:	Hamilton	
Add. Client Ref:	Sampled: 20/04/22	
Submitted By:	Bernice Chapman	

Sample Type: Building Material

Campie Type. Da	maning materia	A1			
Sample Name	Lab Number	Sample Category	Sample Weight on receipt (g)	Asbestos Presence / Absence	Description of Asbestos in Non Homogeneous Samples
HA4 Sheet (Fascia)	2969455.1	Fibre Cement	3.93	Asbestos NOT detected. Organic fibres detected.	N/A

Glossary of Terms

• Loose fibres (Minor) - One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.

Loose fibres (Major) - Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.

• ACM Debris (Minor) - One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM. ACM Debris (Major) - Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.

• Unknown Mineral Fibres - Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required. • Trace - Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Building Mater	ial		
Test	Method Description	Default Detection Limit	Sample No
Asbestos in Bulk Material		·	
Sample Category	Assessment of sample type. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.	-	1
Sample Weight on receipt	Sample weight. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.	0.01 g	1
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1
Description of Asbestos in Non Homogeneous Samples	Form, dimensions and/or weight of asbestos fibres present. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1

CCREDITES

NG LABO

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 29-Apr-2022 and 03-May-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Gante

Mahaleel (May) Alfante BSc, PGDipSci Laboratory Technician - Asbestos

Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) Т

+64 7 858 2000

E mail@hill-labs.co.nz

W www.hill-laboratories.com

Page 1 of 4

Certificate of Analysis

Client:	Environmental Consultants Otago Limited
	Ciaran Keogh
	C/- Environmental Consultants Otago Limited PO Box 5522 Dunedin 9058

2975969	SPv1
04-May-2022	
10-May-2022	
86979	
HAMILTON	
Bernice Chapman	
	04-May-2022 10-May-2022 86979 HAMILTON

Sample Type Cal

Sample Type: Soil						
S	ample Name:	HM1 0.5-0.8 29-Apr-2022 10:40 am	HM1 1.1m 29-Apr-2022 10:50 am	HM2 0-0.3m 29-Apr-2022 11:30 am	HM2 0.4-0.8m 29-Apr-2022 11:45 am	HM3 0-0.2m 29-Apr-2022 12:20 pm
	Lab Number:	2975969.1	2975969.2	2975969.5	2975969.6	2975969.9
Individual Tests						
Dry Matter	g/100g as rcvd	75	-	96	80	96
Heavy Metals, Screen Level			I	1		
Total Recoverable Arsenic	mg/kg dry wt	4	5	2	7	< 2
Total Recoverable Cadmium	mg/kg dry wt	0.43	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	11	14	9	10	9
Total Recoverable Copper	mg/kg dry wt	19	11	8	12	7
Total Recoverable Lead	mg/kg dry wt	400	26	6.2	90	6.3
Total Recoverable Nickel	mg/kg dry wt	7	10	6	6	6
Total Recoverable Zinc	mg/kg dry wt	390	73	23	73	27
Polycyclic Aromatic Hydrocarbo	ns Screening in S	oil*	I	1	1	
Total of Reported PAHs in Soil	mg/kg dry wt	0.6	-	< 0.3	2.0	< 0.3
1-Methylnaphthalene	mg/kg dry wt	< 0.013	-	< 0.010	0.019	< 0.010
2-Methylnaphthalene	mg/kg dry wt	< 0.013	-	< 0.010	0.018	< 0.010
Acenaphthylene	mg/kg dry wt	< 0.013	-	< 0.010	0.023	< 0.010
Acenaphthene	mg/kg dry wt	< 0.013	-	< 0.010	0.037	< 0.010
Anthracene	mg/kg dry wt	< 0.013	-	< 0.010	0.055	< 0.010
Benzo[a]anthracene	mg/kg dry wt	0.038	-	< 0.010	0.114	< 0.010
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.051	-	< 0.010	0.169	< 0.010
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	0.08	-	< 0.03	0.25	< 0.03
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	0.08	-	< 0.03	0.24	< 0.03
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	0.063	-	< 0.010	0.188	< 0.010
Benzo[e]pyrene	mg/kg dry wt	0.039	-	< 0.010	0.105	< 0.010
Benzo[g,h,i]perylene	mg/kg dry wt	0.041	-	< 0.010	0.125	< 0.010
Benzo[k]fluoranthene	mg/kg dry wt	0.024	-	< 0.010	0.077	< 0.010
Chrysene	mg/kg dry wt	0.041	-	< 0.010	0.103	< 0.010
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.013	-	< 0.010	0.024	< 0.010
Fluoranthene	mg/kg dry wt	0.089	-	< 0.010	0.23	< 0.010
Fluorene	mg/kg dry wt	< 0.013	-	< 0.010	0.069	< 0.010
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.038	-	< 0.010	0.120	< 0.010
Naphthalene	mg/kg dry wt	< 0.07	-	< 0.05	< 0.07	< 0.05
Perylene	mg/kg dry wt	0.013	-	< 0.010	0.048	< 0.010
Phenanthrene	mg/kg dry wt	0.040	-	< 0.010	0.21	< 0.010
Pyrene	mg/kg dry wt	0.081	-	< 0.010	0.23	< 0.010

CCREDITED TING LABORATO

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

	Somple Neme	HM3 1.2m	HM4 0.2-0.4m	HM4 0.6-1.0m	HM5 0.7-1.3m	HM6 0.2-0.5m
	Sample Name:	29-Apr-2022	29-Apr-2022 2:00	29-Apr-2022 2:05	29-Apr-2022 2:40	29-Apr-2022 3:15
	Lab Number:	12:46 pm 2975969.10	pm 2975969.12	pm 2975969.13	pm 2975969.15	pm 2975969.16
Individual Tests	Lab Number.	2010000.10	2010000.12	2010000.10	2010000.10	20700000.10
Dry Matter	g/100g as rcvd	79	88	80	82	90
Heavy Metals, Screen Level	g/100g d5101d	15	00	00	02	50
Total Recoverable Arsenic	ma/ka dry wt	5	5	3	3	4
Total Recoverable Arsenic	mg/kg dry wt	ح < 0.10	5 < 0.10	< 0.10	< 0.10	4 < 0.10
Total Recoverable Cadmium	mg/kg dry wt	10	< 0.10 9	15	11	< 0.10
	,	10	9 11	13	9	14
Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt mg/kg dry wt	17.3	12.5	12	11.4	14
Total Recoverable Nickel	mg/kg dry wt	6	8	9	7	9
Total Recoverable Zinc		41	0 42	42	38	37
Polycyclic Aromatic Hydrocarb	mg/kg dry wt		42	42	30	37
,,,				0.7		
Total of Reported PAHs in Soil	,	< 0.4	< 0.3	3.7	< 0.3	< 0.3
1-Methylnaphthalene	mg/kg dry wt	< 0.013	< 0.012	0.026	< 0.012	< 0.011
2-Methylnaphthalene	mg/kg dry wt	< 0.013	< 0.012	0.040	< 0.012	< 0.011
Acenaphthylene	mg/kg dry wt	< 0.013	< 0.012	0.057	< 0.012	< 0.011
Acenaphthene	mg/kg dry wt	< 0.013	< 0.012	0.073	< 0.012	< 0.011
Anthracene	mg/kg dry wt	< 0.013	< 0.012	0.148	< 0.012	< 0.011
Benzo[a]anthracene	mg/kg dry wt	< 0.013	0.018	0.29	< 0.012	< 0.011
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.013	0.022	0.31	< 0.012	< 0.011
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES		< 0.04	0.03	0.44	< 0.03	< 0.03
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.03	0.03	0.43	< 0.03	< 0.03
Benzo[b]fluoranthene + Benzo[fluoranthene		< 0.013	0.023	0.32	< 0.012	< 0.011
Benzo[e]pyrene	mg/kg dry wt	< 0.015 #1	0.013	0.138	< 0.012	< 0.011
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.013	0.015	0.169	< 0.012	< 0.011
Benzo[k]fluoranthene	mg/kg dry wt	< 0.013	< 0.012	0.141	< 0.012	< 0.011
Chrysene	mg/kg dry wt	< 0.013	0.019	0.29	< 0.012	< 0.011
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.013	< 0.012	0.034	< 0.012	< 0.011
Fluoranthene	mg/kg dry wt	< 0.013	0.037	0.39	< 0.012	< 0.011
Fluorene	mg/kg dry wt	< 0.013	< 0.012	0.160	< 0.012	< 0.011
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.013	0.015	0.182	< 0.012	< 0.011
Naphthalene	mg/kg dry wt	< 0.07	< 0.06	< 0.06	< 0.06	< 0.06
Perylene	mg/kg dry wt	< 0.013	< 0.012	0.080	< 0.012	< 0.011
Phenanthrene	mg/kg dry wt	< 0.013	< 0.012	0.51	< 0.012	< 0.011
Pyrene	mg/kg dry wt	< 0.013	0.034	0.38	< 0.012	< 0.011
5	Sample Name:	HM7 0.4-0.6m 29-Apr-2022 4:00 pm	HM7 1.4-1.6m 29-Apr-2022 4:00 pm			
	Lab Number:	2975969.18	2975969.19			
Individual Tests						
Dry Matter	g/100g as rcvd	92	97	-	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	3	2	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	-	-	-
Total Recoverable Chromium	mg/kg dry wt	11	11	-	-	-
Total Recoverable Copper	mg/kg dry wt	8	7	-	-	-
Total Recoverable Lead	mg/kg dry wt	7.5	4.8	-	-	-
Total Recoverable Nickel	mg/kg dry wt	7	6	-	-	-
Total Recoverable Zinc	mg/kg dry wt	31	23	-	-	-
Polycyclic Aromatic Hydrocarb	ons Screening in S	Soil*				
Total of Reported PAHs in Soil	-	< 0.3	< 0.3	-	-	-
1-Methylnaphthalene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.011	< 0.010			

Sample Type: Soil						
	ample Name:	HM7 0.4-0.6m 29-Apr-2022 4:00 pm	HM7 1.4-1.6m 29-Apr-2022 4:00 pm			
l	Lab Number:	2975969.18	2975969.19			
Polycyclic Aromatic Hydrocarbor	ns Screening in S	Soil*	1		I	-
Acenaphthene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Anthracene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.03	< 0.03	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Chrysene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Fluoranthene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Fluorene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Naphthalene	mg/kg dry wt	< 0.06	< 0.05	-	-	-
Perylene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Phenanthrene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Pyrene	mg/kg dry wt	< 0.011	< 0.010	-	-	-
Sample Type: Roading ma	atorial with d	ark colour				
	ample Name:	HM1 Tar 29-Apr-2022				
	Lab Number:	11:19 am 2975969.4				
Polycyclic Aromatic Hydrocarbor		Rock*				
1-Methylnaphthalene*	mg/kg as rcvd	< 0.10	-	-	-	_
2-Methylnaphthalene*	mg/kg as rcvd	< 0.10				
Acenaphthylene*			-	-	-	-
	ma/ka as rcvd		-	-	-	-
Acenaphthene*	mg/kg as rcvd mg/kg as rcvd	< 0.10	-			-
Acenaphthene* Anthracene*	mg/kg as rcvd	< 0.10 < 0.10	- - -	- - -		
Anthracene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10	- - - -	• • • •		- - - -
Anthracene* Benzo[a]anthracene*	mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10			-	
Anthracene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10	-	-	-	-
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency	mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10	-	-	-	-
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic	mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3	-	-	-	-
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j]	mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3	-		- - - - -	-
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene*	mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3		- - - -	- - - - -	- - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene*	mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.10 < 0.10	- - - - -	- - - - -	- - - - - -	- - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[g,h,i]perylene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10	- - - - - -	- - - - - -	- - - - - - -	- - - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10	- - - - - - -	- - - - - - -		- - - - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene* Chrysene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	- - - - - - - - - - -	- - - - - - - - - -		- - - - - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene* Chrysene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene* Chrysene* Dibenzo[a,h]anthracene* Fluoranthene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene* Chrysene* Dibenzo[a,h]anthracene* Fluoranthene* Fluorene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[c]pyrene* Benzo[c],h,i]perylene* Benzo[k]fluoranthene* Chrysene* Dibenzo[a,h]anthracene* Fluorene* Indeno(1,2,3-c,d)pyrene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		- - - - - - - - - - - - - - - - - - -		
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene* Fluoranthene* Fluorene* Indeno(1,2,3-c,d)pyrene*	mg/kg as rcvd mg/kg as rcvd	$< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.5 }$		- - - - - - - - - - - - - - - - - - -		
Anthracene* Benzo[a]anthracene* Benzo[a]pyrene (BAP)* Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] fluoranthene* Benzo[e]pyrene* Benzo[g,h,i]perylene* Benzo[k]fluoranthene* Chrysene* Dibenzo[a,h]anthracene* Fluorene* Fluorene* Indeno(1,2,3-c,d)pyrene* Naphthalene*	mg/kg as rcvd mg/kg as rcvd	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.3 < 0.3 < 0.3 < 0.3 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		- - - - - - - - - - - - - - - - - - -		

^{#1} Due to some interference found in the chromatography, the detection limit was raised. Hence the higher detection limit reported.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil					
Test	Method Description	Default Detection Limit	Sample No		
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2, 5-6, 9-10, 12-13, 15-16, 18-19		
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	1, 5-6, 9-10, 12-13, 15-16, 18-19		
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-2, 5-6, 9-10, 12-13, 15-16, 18-19		
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.05 mg/kg dry wt	1, 5-6, 9-10, 12-13, 15-16, 18-19		
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1, 5-6, 9-10, 12-13, 15-16, 18-19		
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	1, 5-6, 9-10, 12-13, 15-16, 18-19		
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	1, 5-6, 9-10, 12-13, 15-16, 18-19		
Sample Type: Roading material	with dark colour				
Test	Method Description	Default Detection Limit	Sample No		
SHOC Macro Extraction 10x Dilution*		-	4		
Polycyclic Aromatic Hydrocarbons Screening in Rock*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.3 mg/kg as rcvd	4		

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 06-May-2022 and 10-May-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Carole Kegler-Canoll

Carole Rodgers-Carroll BA, NZCS Client Services Manager - Environmental

ATTACHMENT F:

Remedial Action Plan

1 Remediation Action Plan

The information and recommendations provided herein are to augment the processes on-site and are not intended to relieve any contractor or the controller of the place of work of their responsibility for the health and safety of their workers and contractors. Nor is it intended to relieve contractors undertaking work on the site of their responsibilities under the Health and Safety at Work Act 2015 (Ministry of Business, Innovation, and Employment, 2015) and subsequent amendments. The contractor shall develop a site-specific health and safety plan to complement this document, and to address other health and safety requirements that may be applicable to their site works.

Based on available data, lead concentrations (above the human health criteria) have been detected in one sample. Due to exceedances of the predicted background concentrations ('cleanfill criteria'), the recommendations for health and safety procedures and protection of the environment are relevant to soil disturbance in controlled fill (contaminated soil and managed fill) and remedial areas (as shown in Figure 3). Following remedial works, if sampling demonstrates that the concentration of contaminants in soil does not exceed the natural background ranges, controls can be reduced to those appropriate for similar earthworks activities on an uncontaminated site.

If contamination is found that varies significantly from what has been assumed in preparing this document, an update may be required to account for the changed site understanding.

The provisions of this document should be communicated and understood by all site workers. An example Agreement and Acknowledgement Sheet is appended to this document.

Note: Soil within the building footprints and halos will be managed under the 'General Kāinga Ora Contaminated Site Management Plan (Kāinga Ora, July 2022). The Contaminated Site Management Plan should be read in conjunction with this document.

Role	Responsibility
Site Owner Kāinga Ora	To distribute this document and be responsible for ensuring that the site works are undertaken in accordance with this document and any revisions to this document.
Site Contractor to be confirmed	To distribute this document to employees and subcontractors, including updated versions, and to ensure that the correct copy is on-site at all times. To provide control and oversee the redevelopment works. It is recommended that a designated, suitability trained Site Supervisor is present to oversee the works. The Site Supervisor would address changes to site procedures, as necessary, should unanticipated conditions arise. It is anticipated that this Site Supervisor would represent the main site contractor. The contractor involved in the asbestos-related works area should receive non-certified training in asbestos identification, safe handling and suitable controls. A copy of the training shall be kept on record. During the works, earthworks contractors will provide site photographs of remedial works to confirm that the works are being performed in accordance with this RAP.
Contaminated Land Specialist (SQEP) ENGEO	A SQEP, as defined in the NES, shall be appointed to liaise with the contractor during the course of the works, as requested, and to report on the remedial earthworks following completion. The SQEP shall be contacted if any areas of potential contamination are discovered during works.

Table 1: Assigned Responsibilities for Site Work

2 Remediation Methodology and Objective

The most appropriate form of remediation to excavate and remove from the site the fill material above the human health SCS for the proposed residential land use. Due to the presence of uncontrolled material within the site the fill is not considered suitable as engineered fill for construction on-site and analysis results above predicted background levels meant the fill cannot be considered cleanfill for use on other sites. Fill material excavated from the site will require disposal off site at a suitably licenced landfill. This would likely require consent for the disturbance of the 'contaminated site' during remediation.

The delineation testing has identified an impacted area of:

- 4 m north of HM1;
- 2 m east of HM1;
- 2 m south of HM1; and
- 2 m west of HM1.

The required remediation is to a depth of 0.8 m bgl.

If removal off-site was the preferred option this would require the excavation, removal and disposal of an area of soil approximately 24 m2 to a depth of 0.8 m bgl. The volume of soil requiring removal in this scenario is approximately 19.2 m3.

Currently the estimated fee for the disposal of 19.2m3 of contaminated fill material is between \$5,891 and \$7,703 (excluding TCLP testing, permitting, excavation and cartage). Costing for the disposal of this material is based on information provided at the time of writing with an average disposal fee of \$236 / tonne (AB Lime, Winton February 2023), an *in situ* bulk density of 1.3 to 1.7 tonnes / m3. The Remedial Action Plan (Attachment F) has been written for this scenario.

Following the excavation and removal of the fill material around HM1, validation sampling will be required to confirm the remaining fill in the identified area of lead contamination is below the Residential SCS.

An estimate of the known contaminated soils that require management during earthworks (based on the existing contaminant distribution data and conceptual site model) has been made and is provided in Table 2. Additional delineation of the remedial area may be completed prior to initiating remedial works to further delineate the extent of impacted soil.

Site Area	Sample Exceeding Human Health Criteria	Exceedance	Estimated Area of Impact (m ²)	Estimated Depth of Remedial Excavation (m bgl)	Estimated Soil Volume Exceeding Remedial Goal to be Removed (m ³)
Lead contamination area	HM1 /ENV3	Residential 10% SCS	24	0.8	19.2

Table 2: Remedial Volume Estimation

1. Estimate based on available data. Actual volume is reliant on results of validation sampling works.

3 Remedial Criteria

The Soil Contaminant Standard (SCS) for residential 10% produce land use was selected.

Contaminant of Concern	Remedial Goals	Remedial Goal Source
Lead	< 210 mg/kg	Human Health criterion

Table 3: Adopted Remedial Criteria

If additional unexpected contamination is encountered during the works, remedial goals shall be referenced from the National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (NES), (Parliamentary Counsel Office, 2011) and following the MfE Contaminated Land Management Guidelines No. 2, (Ministry for the Environment, Revised 2011).

4 Assessment of Environmental Effects

Based on the requirements of Section 88 of the Resource Management Act (RMA) (updated 2022), and the framework set out in the Fourth Schedule of the RMA, the actual and potential environmental effects related to on-site contamination that may arise during site redevelopment activities include:

- Groundwater, stormwater, and sediment discharges Groundwater encountered during intrusive works or rainwater falling on the site prior to building construction have the potential to come into contact with contaminated material and become contaminated.
- Dust Dust generated during trenching, drilling and fill placement activities has the potential to contain contaminants.
- Tracking of contaminated soil off-site.
- Odours and vapours Volatile chemical contamination is not anticipated to be of concern at the site; however, this RAP includes procedures to be implemented if odourous soil is encountered.

The measures that will be implemented to avoid, remedy or mitigate the identified adverse effects are summarised in Section 6 and Table 5 attached. Through implementation of these measures, it is concluded that the potential environmental effects associated with the proposed programme of remedial works will be less than minor.

The risks to environmental receptors are considered likely to be mitigated if the risks to human health are managed.

5 Contractor Record Keeping

Table 4 presents additional information on the controls which are anticipated to be managed by the Site Supervisor and provided to the SQEP.

Importation of Material	Any fill imported to the site shall meet the WASTEMINZ, (Waste Management Institute New Zealand (WasteMINZ), 2018) definition of cleanfill. Evidence of the type and quantity of imported fill shall be recorded.		
Off-site Disposal	Any excess soil and fill material from the site, as well as used disposable PPE, shall be transported to an appropriate disposal site. Landfill weighbridge receipts shall be obtained as evidence of disposal.		
Record Keeping	Information relating to any incidents or complaints and how these were managed shall be recorded. During the works, earthworks contractors will provide site photographs of remedial works to confirm that the works are being performed in accordance with this RAP. Site photographs shall also be provided which demonstrate that works were undertaken in accordance this document (e.g. boundary controls, PPE etc.).		

Table 4: Contractor Documentation

6 Soil Disposal and Site Management Practices

Table 5 presents site management practices during earthwork activities at the site. The relevance and effectiveness of these protocols shall be reviewed by the Site Supervisor (Table 1) on a daily basis.

The receiving facilities shall be contacted to confirm their acceptance of excess material from these areas prior to receipt.

7 Completion Reporting

Following remedial earthworks, validation sampling of subsurface materials within the remediation area (identified on Figure 3) will be required to confirm the extent of contamination and that the area has been sufficiently remediated.

Validation samples shall be collected by the SQEP from the base and sidewalls of the remedial excavation areas. Samples will be analysed for heavy metals. If the validation results show that further contamination is present at the site, additional remediation will be required.

During the works, earthworks contractors will provide site photographs of remedial works to confirm that the works are being performed in accordance with this RAP.

A Site Validation Report shall be prepared following site development activities. This report shall include the following information:

- Summary of the remedial works undertaken.
- Documentation relating to the disposal of contaminated soil / fill and used PPE.
- Documentation relating to the importation of cleanfill.
- Results of validation samples.

If the validation results show that further contamination is present at the site, additional remediation will be required.

Attachments

Soil Management Summary: (29 Hamilton Street, Gore)

Table 5: Soil Disposal Summary

Soil Management Zones	CONTROLLED MATERIAL (CONTAMINATE D SOIL & MANAGED FILL) Soil shown on Figure 3 (appended to ENGEO report) is not suitable to remain on-site. Other fill material due for excavation prior to construction is suitable to remain on-site however contaminant concentrations for disposal purposes exceed cleanfill criteria	CLEANFILL Contaminant concentrations are above background levels.	From Figure 3 (appended to ENGEO report)	
Key Contaminant	Heavy metals	Due to the elevated concentrations of heavy metals in the fill material this material cannot be considered Cleanfill. Confirmation of the acceptance criteria for fill material by a licenced landfill facility should be sought prior to excavation.	HSEENG23- ENV3S-ENG23-	
Assessment Criteria Exceedance	Predicted regional background concentrations.	Predicted regional background concentrations.	HM 1 ENV2	НМЗ
Estimated Area	24 m ²	>2,000 m ³		
Estimated Depth	0.0m to 0.8 m bgl	0.0 m to 1.4 m bgl	States and the second sec	
Soil Disposal General procedures to be followed when transporting material off-site	Trucks shall be loaded within the site where runoff and possible spills during loading will be controlled and contained. Loads must be securely covered during off-site transport.			
PPE Disposal	PPE, shall be transported to an appropriate disposal site.			
Disposal Documentation	Version		1.0	
		Date	April 23	

Legend

Indicative area of remediation
ENGEO Sample Locations
EC Otago Sample Locations
Site Boundary

Soil Management Summary: (29 Hamilton Street, Gore)

Table 5.2: Site Protocols

Stockpiling of asbestos contaminated material shall be avoided

ADDITIONAL CONSULTING

FURTHER TESTING

- Imported fill material (if applicable). Any fill imported to the site shall meet the AUP definition of clean-fill.
- Soil and / or water requiring off-site disposal (if applicable).
- Additional testing prior to, or as part of, redevelopment works to assess additional cleanfill areas.
- Validation soil sampling following remediation.

ASBESTOS WORKS AREA

NA

Contaminated Land Specialist (SQEP) ENGEO

(03) 328 9102